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Executive Summary 

The simple average monthly consumption (AMC) rule for inventory replenishment estimates 
average consumption from the most recent months of consumption (typically the past three 
months). To estimate the quantity to order, AMC can be multiplied by the desired maximum stock 
level, then subtracting the stock on hand. The simple AMC rule has been a staple of inventory 
systems introduced in healthcare supply chains in many developing countries, and its simplicity and 
intuitive nature have undoubtedly contributed to its prevalence and popularity. Theoretically, the 
approach is appropriate for demand patterns exhibiting strong serial correlation from one period to 
the next, but can also be used for demand patterns that are generally level. However, there are 
healthcare commodities, such as malaria commodities, that exhibit strong seasonality, and the simple 
AMC rule is less effective for these commodities. 

The management of malaria commodities is subject to the patterns of the disease, including seasonal 
fluctuations in some areas, with increased cases during the rainy season. As a result, during the rainy 
season, demand and use of malaria medicines and tests may increase. Therefore, because of the 
seasonal nature of malaria, using only the past three months of data may underestimate annual 
demand if it is calculated at the beginning of the malaria season, and overestimate it if calculated 
toward the end of the season. As a result, the inventory replenishment quantities recommended by 
the simple AMC rule tend to lag seasonal changes rather than precede them, which may not be 
appropriate for inventory management of seasonal commodities. It may be more accurate to use 
alternative methods for calculating resupply. 

This concept paper describes an approach for enhancing the simple AMC rule to handle seasonal 
commodities, while maintaining some of its simplicity to continue to meet the complex needs of the 
developing country settings where it would be used. The approach operationally involves multiplying 
the AMC by indices that compensate for seasonality—referred to as Look-Ahead Seasonality Indices 
(LSI)—before multiplying by the maximum stock level. The LSI approach is intended to provide a 
practical, easy-to-use, enhanced means of calculating resupply for seasonal commodities, at all levels 
of the supply chain. Because of its similarity to the simple AMC rule, the LSI approach is one that 
should be relatively easy to introduce into healthcare settings in developing countries. Given its 
simplicity, it should also be relatively easy to integrate into electronic-based information systems. 

The concept paper examines many of the challenges for addressing resupply of seasonal 
commodities. The LSI approach, at least partially if not completely, addresses all of these concerns. 
In three country case studies, testing antimalarial consumption data from Zambia, Zimbabwe, and 
Burkina Faso, the LSI approach’s performance was commendable and could be recommended both 
as an inventory replenishment mechanism, under conditions that correspond with the healthcare 
settings in developing countries, as well as a forecasting method. In all country case studies, the 
simple AMC rule was outperformed for addressing seasonality, in comparison to the LSI approach. 

For all countries, the LSI approach was evaluated in comparison to four other common models (the 
simple AMC rule, simple exponential smoothing, triple exponential smoothing, and triple 
exponential smoothing with fixed seasonality index), and evaluated in two ways: one as an inventory 
replenishment mechanism using the allocated inventory costs, and the other as a forecasting method 
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using the mean absolute percentage error (MAPE). As a result of this process, each country case 
study provides an estimate of the seasonality index and corresponding LSI that could support 
application of the LSI approach, or similar approaches based on seasonality indices within these 
countries. 

In Zambia, the LSI approach performed best in comparison with the other models, in part because 
the availability of monthly consumption data over nearly a two-year time period facilitated analysis. 
In Zimbabwe, the LSI performed well in the tests, particularly those based on allocated inventory 
costs. As a pure forecasting method based on its MAPE scores, the LSI performance was not as 
comparable to the results of the Zambia case study. However, we would still conclude that the LSI 
can be recommended for use in Zimbabwe. A possible limitation of the Zimbabwe data was its 
availability only on a quarterly basis. 

A main difference between the country case studies was the issue of data availability, particularly in 
Burkina Faso. Special care must be taken with Burkina Faso’s results since, although the LSI 
approach performed well in testing, it would be preferred that the supporting seasonality index had 
been based on more robust consumption data, and that testing of the LSI approach had been more 
extensive. 

Because of its reliance on historical consumption data, the LSI approach might in theory be applied 
in other countries where the President’s Malaria Initiative (PMI) or the National Malaria Control 
Programs (NMCPs) have access to consistent, relatively robust consumption data, and the simple 
AMC rule is currently in place for inventory replenishment. A limitation of the LSI approach is its 
capacity to look too far ahead in the future (e.g., one year). The approach may be best suited for 
resupply calculations, as well as shorter term forecasts, as the further ahead that the LSI is used to 
look ahead, the greater the chance that level of the period may have changed compared to that of 
the most recent consumption. An assessment of the LSI approach may also be of value, in order to 
test the method, its practicality, and its results in a controlled field setting, in comparison to current 
resupply methods. 

As any quick scan of the literature reveals, there are many ways to approach both inventory 
replenishment and forecasting. The approach introduced and assessed here is only one such method. 
The discussions here should be considered a case for the legitimacy of the LSI approach for seasonal 
commodities, but not to the exclusion of other approaches, or that the suitability of the LSI 
approach should be taken for granted in all situations involving seasonal commodities. As always, 
the particular context of the country situation should first be carefully considered in the testing and 
potential application of the LSI approach. 
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Introduction 

The simple average monthly consumption (AMC) rule for inventory replenishment estimates 
average consumption from the most recent months of consumption (typically the past three 
months). To estimate the quantity to order, AMC can be multiplied by the desired maximum stock 
level, then subtracting stock on hand. The simple AMC rule has been a staple of inventory systems 
introduced in healthcare supply chains in many developing countries. However, inventory systems 
that use the simple AMC rule can struggle with seasonal commodities, because of the properties of 
the resupply method that are implicit in the approach. 

Figure 1 captures the main challenges with seasonal commodities when the simple AMC rule is used 
at the health facility level of healthcare systems. While this graph was created by simulation, we see a 
similar profile at many facilities in the field. The line chart shows actual consumption at one facility, 
with each period representing two months. Seasonality is apparent, with a peak season and off-peak 
season, with a length of six months each, or three periods. The bar chart captures inventory on hand 
at the end of each period. 

Figure 1. Challenges for Use of the Simple AMC Rule for Inventory Replenishment 
of Seasonal Commodities 
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Main Challenges with the AMC Rule? 

For inventory replenishment based on the simple AMC rule, there is the potential for stockouts at the beginning of 
the high/peak season, primarily because the simple AMC rule tends to react to demand rather than prepare for 
demand. 

In addition to this potential for stockouts at the beginning of the peak season, there is also a tendency for high 
levels of inventory to result after the peak season and sustain well into the low season. In the simulation in figure 1, 
we see levels of inventory as high as eight times consumption levels in the low season. Such high levels of inventory 
are often similar to what we find in the field. 

At any given level of the supply chain, the simple AMC rule incorporates two different components: 
a forecasting component and an inventory replenishment component. The forecasting component is 
similar to the moving average forecast, which uses a rolling forecast of the most recent periods as 
the forecast for consumption going forward (Makridakis, Wheelwright, and McGee 1983). The 
moving average is suited to demand patterns that exhibit strong serial correlation from one period to 
the next. The moving average can also be reasonably used for demand that has no trend, or is 
generally level over time. The inventory replenishment component of the simple AMC is an order up to 
mechanism, facilitated by a target created by multiplying the AMC by the maximum stock level. 
Ideally, order up to mechanisms are appropriate for inventory replenishment in settings where 
inventory is reviewed periodically, and this characterizes many of the healthcare settings in 
developing countries. Primarily, the simple AMC rule’s challenges with seasonal commodities stem 
from the moving average forecasting approach inherent in its design. 

This concept paper describes an approach for enhancing the simple AMC rule to handle seasonal 
commodities, while maintaining some of its simplicity to continue to meet complex needs. Based on 
experience in field settings, a rule is needed that is still intuitive enough that people can grasp, 
understand, and explain to others. The revised approach operationally involves multiplying the AMC 
by indices that compensate for seasonality, referred to as Look-Ahead Seasonality Indices (LSI), 
before multiplying by the maximum stock level. 

There are many ways to approach both inventory replenishment and forecasting, and the LSI 
approach introduced and assessed here is only one such method. The discussions here should be 
considered an argument for the legitimacy of the LSI approach for seasonal commodities, but not to 
the exclusion of other approaches, or that the suitability of the LSI approach should be taken for 
granted in all situations involving seasonal commodities. 

Inventory Replenishment and Forecasting with Seasonality 
The basic inventory management approach for addressing seasonality involves understanding the 
timing within the seasonal cycle and how consumption is expected to change over the near term. 
For example, at the facility level, are we at the beginning of the peak season? Or for higher tiers in 
the supply chain, are we close to the peak season? In terms of execution, should we start ramping up 
inventory levels, and if so, by how much? Similar questions exist for the end of the peak season. The 
approach to forecasting is crucial to providing the understanding of seasonality that supports the 
inventory management approach. 

Typically, approaches to forecasting seasonality are based on historical data and generate a numeric 
representation of the consumption’s general profile over the seasonal cycle. For example, for a 
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commodity with an annual seasonal pattern, if the monthly consumption quantities over a year are 
divided by the consumption in the first month, then the resulting ratios still capture the general 
shape of the annual consumption pattern. The resulting ratios also give the relationship of 
consumption in a particular month to that of the first. Such a set of ratios is usually referred to as a 
set of seasonality indices. Table 1 provides an example of the calculation process for creating 
seasonality indices. 

Table 1. An Example of Calculating Seasonality Indices for Our Primary Health Facility 

Month Consumption (units) 
Seasonality Index 

Calculation Seasonality Index 

Jan–Feb 
(reference month) 500 = 500 / 500 1.00 

Mar–Apr 865 = 865 / 500 1.73 

May–Jun 1,515 = 1,515 / 500 3.03 

Jul–Aug 1,645 = 1,645 / 500 3.29 

Sept–Oct 1,315 =1,315 / 500 2.63 

Nov–Dec 500 = 500 / 500 1.00 

Forecasting approaches generally make use of these seasonality indices to remove or reintroduce 
seasonality as needed when generating a forecast. Generally, existing consumption data would have 
the seasonality removed (de-seasonalized) before additional analysis and extrapolation are done to 
create an intermediate forecast. Seasonality would then be added (seasonalized) to create the final 
forecast (Makridakis et al. 1983). A simple form of de-seasonalizing data is that of dividing by the 
appropriate seasonality index; seasonalized data can be created by multiplying by the appropriate 
seasonality index. An example of a well-known forecasting approach for seasonality is Holt-Winter’s 
Triple Exponential Smoothing (see appendix A), which incorporates trend and seasonality 
information using a seasonality index, but allows both the trending parameters and the seasonality 
index to be continuously updated as each period of consumption occurs. 

Motivation for Look-Ahead Seasonality Indices 
The motivation for the LSIs comes from a simple approach of using history to predict the future, or 
to look ahead and compare its performance to the simple AMC rule. Consider an example of the 
simple AMC rule, which creates a maximum stock level quantity target based on consumption in the 
previous two-month period, and a maximum stock level multiplier equal to two, giving four months 
of consumption. 

If consumption follows that of the “actual” line chart in figure 2 (which is taken from the first nine 
periods of consumption in our example in figure 1), we can see that we will have some stockout 
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concerns in period 9, when consumption is about 2,100 units, but the maximum stock level quantity 
target will only be about 1,500, since consumption in period 8 is about 750 units. A simple example 
of using history to look ahead would, at the beginning of the two-month period #9 (months five 
and six [May and June] of year two), look at consumption one year before in period #3 (months five 
and six [May and June] of year one). Period #3 covers the same May and June two-month period as 
period #9, and hopefully the same time with the seasonality cycle, but one year earlier. The top-up 
level target would be 2,800, which is double the consumption in period #3 (about 1,400 units). 

Figure 2. Motivating Example for Look-Ahead Seasonality Indices 
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Figure 3 puts this idea of using history to look ahead and compares it to the simple rule of using the 
previous period’s consumption for the AMC. For the approach of using history to look ahead, we 
use a three-period average of consumption one year ago. For both approaches, the same maximum 
stock level is used to multiply. 

What we see first is that until we have historical data, we cannot use our new approach. (How to 
deal with limitations of historical data, including the case of lost consumption data due to stockouts, 
is addressed later in this document.) But with this history, there is still some potential for stockouts 
at the beginning of the peak season, although we seem to do a little better than the simple AMC 
rule. Still, we see in period #11 (September and October of year two) that we do stockout using the 
historical data to use the look-ahead approach, but not using the simple AMC rule. That’s because 
consumption in the peak season in the current year is on average higher than consumption in the 
peak season one year prior, and we have no way of accounting for that. The look-ahead approach 
definitely seems to do better with inventory during the low season as compared to the simple 
AMC rule. 
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Figure 3. Comparing AMC Rule to Using Historical Consumption to Look Ahead 
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Our simple example of using history to look ahead seems to be moving in the right direction, but it 
still has some issues. Those challenges are listed as follows and will be used to help evaluate the LSI 
approach once we introduce it: 

• There does not seem to be a mechanism to deal with changes in levels from one year to the next, 
especially when consumption increases. 

• What happens with lost consumption due to stockouts?  

• In figure 2, what if the two months in period #9 (May and June, year two) are at a slightly 
different place in the seasonal cycle (e.g., due to rainy season starting early or late)? 

• Can the approach be used if we have no historical consumption data? 

• What about higher tiers in the supply chain? Would they use the same rule? 

• Can we use this approach to help plan for facilities that regularly get cutoffs from routine 
inventory replenishment?  

• How would we operationalize the approach within existing healthcare systems in developing 
countries?  
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Look-Ahead Seasonality Indices 
 

By strict definition, the LSI is a set of supply chain, tier-specific indices that adjust current 
consumption rates to create a look-ahead forecast for consumption by incorporating seasonality and 
current levels of consumption. 

A set of seasonality indices gives the relative difference in consumption across the season. The LSI 
is essentially a ratio of averages of seasonality indices: the average seasonality index for the periods 
that you are trying to predict, and the average seasonality index for the periods of recent 
consumption that you plan to use for the forecast. 

The LSI is supply chain tier specific. As a result, LSI corresponds to tier-specific max/min levels. 
The LSI also incorporates the lead time for inventory replenishment to the specific tier, as well as its 
inventory review period. (An explanation of how varying lead times and review periods can be 
incorporated in the LSI approach will be explained in the section “Incorporating LSI at higher tiers 
in the supply chain,” and appendix B also provides a general formula.) 

Lead time is the time between when new stock is ordered from the vendor and when it is received 
and available for use, and the review period affects how much inventory is ordered at a time; the two 
concepts are independent of each other. (Lead time varies by tier of the supply chain. However, no 
matter what the tier, stock is considered “received and available for use” when that particular level 
of the supply chain can actually use them, whether that “use” may be to hold in storage or push to 
the next level of the supply chain [at a regional warehouse, for example] or provide commodities to 
patients [at the facility level].) If a tier of the supply chain has a four-month lead time, then the 
forecasts for this tier needs to look ahead four months when placing an order, as compared to 
another tier in the supply chain that might get its order immediately and only has to forecast one 
period ahead. 

The inventory review period also varies by tier of the supply chain and is the routine length of time 
between periodic assessments of inventory to determine if additional stock is needed. If the review 
period of one tier is two months (meaning you order every two months and so your order must 
cover at least two months of inventory), while another is only one month, then the LSI for the 
former should look out over two months, while the LSIs for the latter should look out over one 
month. Lead times have to be less than the review period, and many facilities below the central 
medical store have a low lead time compared to the review period. 

In most cases, lead times at the central level are greater than lead time between levels in country. For 
example, the central medical store may have a longer lead time, especially if procuring from other 
countries. Max/min levels are usually based on the lead time and review period. At the highest level, 
they are also for procurement planning, which is not only forecasting, but also accounting for any 
quantities required to fill the pipeline. 

Using the LSI for inventory replenishment for different tiers is fairly straightforward once calculated. 
In the simple AMC rule, we would take the product of consumption and the maximum stock level 
multiplier, subtracting stock on hand (SOH). 
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Determining order quantity using simple AMC: 

Order quantity = AMC × max – SOH 

Using LSI, determining the maximum stock level quantity involves taking the product of average  
recent consumption and LSI for the current point in the  seasonality profile. This provides the look-
ahead forecast for consumption, which is then multiplied by  the maximum stock level, subtracting  
SOH.  

Determining order quantity using LSI: 

Order quantity = AMC × LSI × max – SOH 

A couple points can be made about the LSI approach already: 

First, this approach incorporates the current level of the consumption, because recent consumption 
is used to estimate the look-ahead forecast, and the LSI is a ratio that accommodates changes in 
levels from one year to the next. So, if recent consumption exhibits a level change compared to 
history, it will be incorporated into the look-ahead forecast. 

Second, the form of the LSI maximum stock level target is one that should be easy to introduce into 
healthcare settings in developing countries, because it is similar to the simple AMC rule. Given its 
simplicity, it should also be easy to integrate into electronic-based information systems. The formula 
can even be used for non-seasonal commodities where appropriate, by setting the LSIs equal to 1. 

Creating LSIs 
As an example of how to create a set of LSIs for inventory replenishment, consider creating one for 
a primary health facility. Here, we assume that the health facility reviews its inventory every two 
months and lead time for receiving inventory is fairly small compared to that review period (e.g., 
only a couple of days). 

We start with seasonality indices, which give the relative difference in consumption across the 
season. (Refer to page 3 for an example of determining seasonality indices.) One way to create these 
indices is to take consumption for each period in the year, and divide by consumption in a reference 
period. An equivalent set of seasonality indices would be generated if we divide by the average 
consumption in a period. In our example, we take the first six two-month periods of simulated 
historical consumption in figure 1, and divide actual consumption by consumption in the first 
period. 

This gives the seasonality indices charted in figure 5 and listed in table 1. We can interpret these 
indices in a straightforward manner. For example, we generally expect consumption in the third 
period to be three times consumption in the first period. In addition, we can take the ratio between 
any two periods, and that allows prediction of consumption of one period versus another, as 
opposed to always having to use the reference period. That is the basic idea of the LSI as a ratio of 
seasonality indices. 
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Figure 4. Formula for LSI in a Period for Our Primary Health Facility 
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If the formula for LSI given in figure 4 looks a bit daunting, it isn’t really. The formula basically 
states that the LSI for a period i is a ratio, with the average of the seasonality indices for the three 
periods before i (i-1, i-2, i-3) in the denominator, and the average of the seasonality index for period 
i and the indices of the periods preceding and following period i (i-1 and i+1). 

Let’s take a concrete example. Suppose we’re at the beginning of period #4 (July and August) at a 
health facility, and we want our LSI to help predict demand for that period. At the beginning of 
period #4 we have the seasonality indices available for the last three periods, 1 (January and 
February), 2 (March and April), and 3 (May and June). So, our LSI for period 4 has the average of 
seasonality indices for the periods #1, #2, and #3 in the denominator. It also has the seasonality 
index for period #4, and the two periods on either side of period #4, periods #3 (May and June) 
and #5 (September and October). Periods 3 and 5 are in the numerator because we want to add 
some correction, in case seasonality has shifted a bit early or late. The three indices in the numerator 
will allow us to calculate the average of recent consumption.1 Figure 5 and table 2 show the LSIs 
that we would generate from our seasonality indices (calculated in table 1), and the following 
example also shows how to calculate the LSI for one period, July and August (period #4): 

1  The mathematically inclined will recognize that  since the LSI  is a ratio  of  seasonality indices, it  simultaneously de-seasonalizes and  
reseasonalizes the most recent  consumption data in order to create the look-ahead forecast.  
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Table 2. Seasonality Index (SI) and LSI for Our Primary Health Facility 

Month SI LSI 

Jan–Feb 1.00 0.54 

Mar–Apr 1.73 1.24 

May–Jun 3.03 2.16 

Jul–Aug 3.29 1.55 

Sept–Oct 2.63 0.86 

Nov–Dec 1.00 0.52 

Figure 5. Seasonality Index and LSI for Our Primary Health Facility 

Figure 6 shows the performance of our LSI approach, instead of using history to look ahead, 
compared to the simple AMC rule. The LSI approach improves on avoiding stockouts compared to 
using historical consumption to look ahead that we used earlier (see figure 4) and not only lowers 
inventory in the low season, but inventory tends to ramp up toward the high season. Using the 
simple AMC rule, inventory tends to trend down going into the peak season, as a result of too much 
inventory being introduced at the end of the peak season. 

10 



Figure 6. Comparing AMC Rule to LSI Approach 

Discussion 
At the end of the introduction, after introducing the idea of using history to look ahead and forecast, 
the following issues were raised for evaluating a general approach for addressing seasonality: 

• incorporating changes in level compared to history

• accounting for lost consumption due to stockouts

• compensating for shifts in timing of seasonality

• using with poor or no historical data

• using the approach at higher tiers in the supply chain

• planning for facilities that regularly get cut off from routine inventory replenishment

•  operationalizing the approach within existing healthcare systems in developing countries.

We examine in more detail in the following paragraphs the LSI approach with respect to each of 
these issues. 

Incorporating Changes in Level Compared to History 
As mentioned earlier, the LSI approach has some mechanisms for incorporating changes in the level 
of consumption, since it uses the most recent consumption data in making its forecasts. Being a 
ratio, the LSI preserves the level of the recent consumption data and only adjusts it for seasonality. 
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The LSI approach, however, does have a weakness if forecasts need to look too far ahead in the 
future (e.g., one year). The further ahead that the LSI is used to look ahead, the greater the chance 
that level of the period may have changed compared to that of the most recent consumption. In 
such situations, the forecast using the LSI approach can be augmented by a separate trend 
parameter. For example, assuming an annual growth rate of 3 percent, forecasts that look ahead one 
year can be increased by 3 percent to account for the growth rate. 

Accounting for Lost Consumption Due to Stockouts 
Lost consumption as a result of stockouts refers to consumption that would have occurred if there 
was inventory available to meet all of the consumption. When there is lost consumption, this tends 
to underestimate the true AMC if it is not tracked in some fashion. For example, the number of days 
out of stock may be recorded, or the number of patients recorded that would have received the 
health commodity in the event of a stockout. Lost consumption is a distinct reality for healthcare 
systems in developing countries and, therefore, it is important to understand how robust the LSI 
approach can be to the impact of lost consumption on forecasting. 

Figure 7 shows the stock on hand and the average percentage of consumption that is lost at the 
facility as a result of stockouts for three scenarios: using the simple AMC rule (which uses the 
previous period’s consumption as a forecast) and not tracking consumption; using LSI and tracking 
consumption; and using LSI but not tracking consumption.2 Here, tracking consumption means 
recording the consumption that would have occurred if there had not been some stockout (e.g., 
recording days out of stock). Also, stock on hand is the inventory at the facility after meeting 
demand. 

Generally, the lower the curve on this graph, the better performing the scenario, since it implies that 
the scenario is able to meet the same level of consumption, but with lower levels of inventory in the 
entire supply chain. Here, using LSI and tracking lost consumption is expected to outperform the 
other two methods, since tracking lost consumption reduces the underestimation of the true AMC, 
which should improve forecasting. 

In figure 7, we see that the performance of using LSI without tracking lost consumption is similar to 
that of using LSI with the tracking of lost consumption. The similarity in performance here of both 
LSI approaches can be at least partially attributed to the use of averages of consumption over 
multiple periods, as the more periods that are used to calculate the AMC, the less the under
estimation effect of stockouts. 

Compensating for Shifts in Timing of Seasonality 
As mentioned earlier, the formula for LSI includes additional seasonality indices in the numerator 
(those preceding and following the periods that are being forecast), as a means of providing some 
correction for shifts in the timing of seasonality. Incorporating the preceding period incorporates 

2  These curves were generated by  varying the maximum stock level multiplier for all three scenarios.  
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the potential that the seasonality is delayed in its arrival, while incorporating the following period 
incorporates the potential that the timing of seasonality is early. 

Using LSI without Historical Consumption Data 
If there is insufficient historical consumption data to generate accurate seasonality indices and LSIs, 
LSIs can still be generated from a rough sense of seasonality and used until sufficient consumption 
data are generated. For some seasonal commodities like malaria, it is usually possible to identify 
which periods in the season are generally considered low season and which are considered peak. In 
addition, it is often possible to estimate how much higher the consumption in the peak season is 
compared to the low season. For example, facility workers can give a rough estimate of how many 
patients they see per week in the rainy season as compared to the low season. This information can 
be enough to generate a rough seasonality index from which LSIs can be generated. 

Figure 7. Comparing Inventory Performance Given Stockouts and Lost Consumption 
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Table 3. Crude Estimates for Seasonality Index and LSI 

Original SI Original LSI Estimated SI Estimated LSI 

1 0.538681 1 0.666667 

1.730263 1.244076 1 2.057601 

3.026316 2.159506 2.5 1.522136 

3.289474 1.554286 2.5 0.808178 

2.631579 0.859635 2.5 0.622532 

0.995614 0.517157 1 0.41676 

Consider our example of seasonality from table 1. Such a seasonality pattern could be approximated 
by assuming that consumption in the peak season is 2.5 times that of consumption in the low season 
and that the peak season lasts for half of the year. Such a seasonal pattern can be represented by 
setting the seasonality index in the low season to 1 and the seasonality index in the peak season to 
2.5, as in table 2. 

From this crude seasonality index, estimated LSIs can be calculated in the usual way, using the given 
LSI formula. Although this is a gross estimate of the true LSI, it allows an inventory management 
process that is built around the LSIs to operate and thus exhibit some sensitivity to seasonality, 
without having to wait for the year or two to generate consumption data needed for more accurate 
estimates. To compensate for the crudeness of the LSI estimates, it would also be appropriate to 
increase the maximum stock level multiplier slightly, so as to provide additional buffer inventory to 
cover errors in forecasting. 

For example, if the multiplier is 2, it could be raised to 2.2 or 2.5. The increase in the maximum 
stock level would be subjective. There is no rule of thumb for how much you would raise the max, 
although it would be based on given country context and the feasibility of increasing maximum 
stock levels and by how much. Again, this subjective increase would only be applied when LSI 
estimates are crude. In the absence of historical data, an increase in the maximum stock level 
multiplier would also be appropriate, because in general, it would drive down stockouts, improve the 
quality of the consumption data that is being calculated, and improve the estimates of seasonality 
that would be inferred. 

Use of LSIs by Higher Tiers in the Supply Chain 
As described earlier, the LSIs are considered supply chain tier specific: They should be adjusted to 
match the lead times for inventory to be replenished to that tier of the supply chain and the time 
between the review of inventory. Again, because of its similarity to the simple AMC rule, the LSI 
approach is ideally intended to provide, at all levels of the supply chain, a practical and easy-to-use 
means of calculating resupply for seasonal commodities. 
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Earlier we gave an example formula for the LSI for facilities, assuming that facilities review 
inventory every two months and that the lead time for receiving inventory was fairly small compared 
to that review period of two months. Consider another example of a warehouse that has a lead time 
of four months and reviews its inventory every two months. The formula for its LSIs is given in 
Figure 8. 

As mentioned earlier, review period and lead time are different concepts that affect the periods that 
you are trying to forecast. If supply chain tiers differ in either of these, then the LSI should reflect 
that. Here, the numerator is the average of the seasonality index of the period that is four months 
away (two, two-month periods), and the index of the period that precedes and that follows. 
Appendix B also provides a general LSI formula for any tier in the supply chain with a particular 
lead time and length of the review period. 

Upstream tiers in the supply chain can use their LSIs on consumption data from downstream tiers 
like health facilities (if this information is shared with the upstream tier), or can use the LSI on their 
own issues. As discussed in appendix C, the most benefit to the supply chain comes from all tiers in 
the supply chain using LSI. However, even if upstream tiers do not use the LSI for their own issues 
but only on downstream tiers, there is still benefit, as the LSI makes orders from the downstream 
tiers more predictable and easier to forecast. Interestingly, the benefits from sharing consumption 
data from downstream tiers with upstream tiers only comes when all the tiers use a sophisticated 
approach like LSI and only for commodities that are generally in good supply (with consumption 
data available). 

Figure 8. Formula for Supply Chain Tier with Lead Time of Four Months and Review 
Period of Two Months 
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Planning for Facilities that Get Cut Off from Routine 
Inventory Replenishment 
The current approach for dealing with facilities that are regularly cut off from routine inventory 
replenishment is to use the AMC and a higher maximum stock level (compared to facilities that do 
not get cut off), prior to the time that such facilities are usually cut off. The higher maximum stock 
level is intended to allow inventory to cover the period over which the facility is expected to be cut 
off. However, if the period that a facility is cut off coincides with the peak consumption season, and 
since the AMC will be based on the low season, then it is possible that the higher maximum stock 
level still results in insufficient inventory for the facility to support it during the period that it is cut 
off. 

Figure 9. Formula for LSI for Facility Cut Off for Two Periods 

Two periods over which the 
facility is expected to be cut 
off 

Additional indices add 
some correction if 
seasonality has shifted 
a bit earlier or later 

Ave (s , s , s , s )i−1 i i+1 i+2LSI i = 
Ave (s , s , s )i−3 i−2 i−1 

Three-period average of past 
seasonality indices (for which 
consumption will be known 
by period i) 

Consider an example where the monthly consumption at a facility during a six-month peak season is 
300 units, and monthly consumption in the low season is 100 units. The facility could be cut off for 
all six months of the peak season. The max level required at the beginning of the peak season to 
cover twice the consumption in the peak season over the six months is 3,600 units, implying a 
maximum stock level of 36 months of stock (MOS) on the monthly consumption in the low season. 
Current approaches would focus on the monthly consumption in low season, and choose a 
maximum stock level closer to 12 rather than 36 on the monthly consumption low season, resulting 
in lower inventory than appropriate for the cut-off facility. 

To address this, LSIs can be generated for cut-off facilities for the period right before the facility is 
to be cut off. These LSIs would determine the top-up level for these facilities. For example, consider 
a facility that is cut off for four months (that is, two two-month periods) beginning at a certain 
period. The LSI for that period can be recalculated using the formula given in figure 9. 

Here the formula is similar to that from figure 8, except that in the numerator, the seasonality 
indices that are averaged cover the two periods that the facility is cut-off, periods i and i+1, and the 
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periods before and after the cut-off period. Recall that these additional periods add some correction, 
in case seasonality has shifted a bit earlier or later. 

If the maximum stock level quantity target is two times the consumption over the cut-off period, 
then the maximum stock level multiplier would be four, since the facility is cut off for a total of two 
two-month periods. 

The advantage of the LSI is that it adjusts for differences in consumption over the cut-off period 
and consumption when the inventory decision is made about what to send to the cut-off facility. As 
such, the maximum stock level only needs to take into account the length of the cut-off period. The 
max for cut-off facilities would be different compared to non–cut-off facilities, even without LSI. 
The problem is when the forecast in consumption for the cut-off facility doesn’t take into account 
peak season levels but rather is based on consumption in the low season. The LSI should correct for 
this mistake and ensure that old max levels for cut-off facilities work better. 

Operationalizing within Existing Healthcare Systems 

Fit with Information Systems 
Existing healthcare systems in developing countries typically are a hybrid of information systems, 
with primarily manual systems in place in downstream facilities, like health centers, and electronic 
systems becoming more prominent in upstream facilities, like central medical stores. The popularity 
of the simple AMC rule is at least partially due to its ease of use in manual systems, with inventory 
control decentralized and pushed down to downstream facilities. The LSI approach has the potential 
to still be used in manual systems due to its simplicity. 

For example, special forms can be created with preprinted LSI information that can be used by 
health workers to calculate their top-up levels for each replenishment period after calculating the 
AMC. Orders are the difference between maximum stock levels and the inventory at the facility. So 
each facility would need to calculate AMC, then multiply it by LSI and the maximum stock level 
multiplier to get the maximum level. Then inventory would be subtracted from the maximum stock 
level, for the quantity that should be ordered. 

Electronic information systems could easily adopt the use of LSIs given their simplicity. These 
systems could also allow for more sophistication in their use, such as having different sets of LSIs 
for different regions or types of facilities (e.g., primary versus tertiary) if the historical consumption 
data showed that such differences were significant. Such sophistication would be difficult to 
administer in more manual systems, where one set of LSIs for all facilities may sacrifice accuracy to 
allow for ease of implementation and ongoing administration. 

Use across Products 
Across products within the healthcare system for developing countries, multiple products may share 
the same seasonal pattern. For example, it would be reasonable to expect that most malaria-related 
products would share the same seasonal pattern. In the case of products that do not show a seasonal 
pattern, setting the LSI for those products across all periods equal to 1 is the same as using the 
simple AMC rule when it is more appropriate. Thus, the LSI approach can be incorporated into 
managing all product, whether they have a seasonal pattern or not (e.g., family planning products, 
which do not exhibit a seasonal pattern). Economies can be gained by using a single set of LSIs 
across groups of products, where appropriate. 
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On a side note, in some countries, the rainy season can result in an overall increase in patient 
volumes at health facilities, which generally drives an increase for health commodities (e.g., 
antibiotics for upper respiratory tract infections). The increase in volume is probably nowhere near 
that for commodities like malaria, and this seasonal variation may be covered sufficiently by the 
maximum stock level used in the simple AMC rule. However, if it becomes needed, the LSI 
approach can incorporate this milder seasonality profile through development of an additional LSI 
index, reflecting the milder seasonality profile. 

Summary 
The LSI approach is presented here as a mechanism for enhancing the simple AMC rule to handle 
seasonal commodities, while maintaining some of its simplicity to continue to meet complex needs. 
The approach operationally involves multiplying the AMC by indices that compensate for 
seasonality, before multiplying by the maximum months of stock level. The LSI approach makes use 
of a standard approach in forecasting so-called seasonality indices from historical consumption data. 

Table 4 captures the list of challenges for an approach used to address seasonality and highlights the 
features of LSI that help to address those challenges. We discussed the ability to address changes in 
level of consumption from history to the present because of the use of ratios and the fact that we 
use recent consumption for forecasting. With respect to lost consumption, simulation results suggest 
that LSIs are reasonably robust compared to the underestimate of consumption, which occurs as a 
result of stockouts, partly because we use averages in our formula. That is, since stockouts lead to 
low levels of consumption, which when used in forecasts tend to result in forecasts that are biased 
low, the LSI is considered robust against these effects. This is because the bias for low forecasts in 
the face of stockouts is not as high as other forecasting methods; this robustness is partly the result 
of the use of averages of multiple periods of consumption in our formula. 

Also, if lost consumption is tracked—for example, using days out of stock or tracking patients that 
do not receive commodities—then the implied lost consumption can be easily incorporated and 
used with the LSI. The LSI has some correction for potential shifts in seasonality due to the 
incorporation of additional seasonality indices beyond those periods that are being forecast. 

In situations that lack historical demand, an inventory system can be initialized with a rough idea of 
seasonality (e.g., assuming that consumption during the peak season is two to three times that of the 
off-peak season and that the peak season is half of the year). LSIs can be built based on that rough 
idea and updated when historical consumption data are available. 

LSIs are linked to procurement lead times and review periods of the supply chain tier where they are 
used, and thus are tier specific. For upstream tiers, they can be used on consumption data from 
downstream tiers or on issues. The LSI approach can also be used to plan for cut-off facilities, 
because LSIs can be created that look ahead for the period(s) that the facility will be cut off. Finally, 
the similarity between the AMC and LSI formulas for top-up maximum stock level targets between 
the simple AMC rule and the LSI approach lends itself to operationalizing both within existing 
healthcare systems and systems that are shifting to increased use of electronic information systems. 
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Table 4. Challenges for Addressing Seasonality and Features of the LSI Approach 

Challenges for Addressing Seasonality LSI Features 

Are there level changes, especially when 
consumption is up compared to previous 
year? 

LSI based on ratio, which accommodates level 
changes 

What happens with lost consumption due to 
stockouts? 

LSI is robust to lost consumption through use of 
averages 

What if there are seasonality shifts (e.g., due 
to rainy season starting early or late)? 

LSI has some correction for shift in seasonality 

Can it be used if we have no history? Rough seasonality index can be used until enough 
consumption data is captured 

What about higher tiers in the supply chain? 
Would they use the same rule? 

LSI is tier specific by being based on procurement 
lead time and length of review period 

Can we use it to help plan for cut-off 
facilities? 

LSIs can “look ahead” for the period that the facility 
will be cut off to aid planning 

How do we operationalize within healthcare 
settings in developing countries? 

Similar formula for top-up level target as simple 
AMC rule and can be used with commodities with 
no or moderate seasonality 
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Zambia Case Study 

Whereas the previous section focused on the concepts behind the LSIs, this section examines the 
Zambian context for the potential utility of the LSI, as well as provides simulated results of the use 
of the LSI approach on historical consumption data. 

Zambia 
Zambia is a landlocked country of about 13.5 million people in Southern Africa (Central Intelligence 
Agency 2011). Per capita annual income of approximately U.S.$1,700 (2012) places the country 
among the world’s poorest nations: Zambia was ranked 150th on the Human Development Index in 
2010 (United Nations Development Programme n.d.). Zambia is also one of the most highly 
urbanized countries in sub-Saharan Africa, with 44 percent of the population concentrated in a few 
urban areas along the major transport corridors, while rural areas are sparsely populated. Rural 
poverty rates stand at about 78 percent and urban poverty rates at 53 percent (United Nations 2010). 

Malaria is the primary public health challenge, with an estimated three million cases in 2008–2009 
(World Health Organization 2010). The public sector is the largest provider of healthcare, followed 
by the Churches Health Association of Zambia (CHAZ) member institutions and the mine 
hospitals. Public sector facilities are located throughout the country, while mission facilities are 
concentrated in the rural areas. A small number of private facilities (hospitals, clinics, pharmacies, 
etc.) also provide some healthcare, but predominantly in the urban and mining areas. There are some 
small and informal outlets—Kantembas—which operate in remote areas and high-density, urban 
shanty compounds. A lack of human resources also impacts the delivery of services in Zambia, with 
medical staff leaving the country or choosing practice in the private sector. The impact of HIV and 
AIDS on health workers is a challenge as well. 
The climate of Zambia is tropical modified by elevation. There are two main seasons: the rainy 
season (November to April) and the dry season (May/June to October/November). In the rainy 
season, the mosquito population generally rises, since mosquitoes lay eggs in standing water, and 
there is an expected rise in cases of malaria and the need for antimalarial treatments. Simultaneous 
with the increased need for malaria treatments, there may also be greater transportation difficulties 
in getting to remote areas (e.g., due to flooding). 

Creating a Seasonality Index for Zambia 
Figure 10 shows the geographic distribution of health facilities in the Essential Medicines (including 
malaria) Logistics Improvement Program (EMLIP) districts of Zambia; the Project serves and has 
access to data only in the EMLIP districts. The green dots represent the facilities with 18 or more 
months of data, all located in the original 16 EMLIP districts, which were used to create a 
seasonality estimate for Zambia. We refer to these facilities as “seasonal” facilities. Orange dots 
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represent facilities with sufficient data, but their consumption profile seemed initially to not fit the 
seasonality pattern of the seasonal facilities, and we refer to these as “aseasonal.” Blue facilities were 
facilities with sufficient data, but were neither convincingly seasonal or aseasonal. Smaller purple 
circles were facilities with limited data, while gray small circles are facilities not in EMLIP focus 
districts. The prime takeaway from this map is that the seasonal and seemingly aseasonal facilities 
were distributed broadly across the country, with most regions holding both aseasonal and seasonal 
facilities. This kind of dispersion lends support to use of a single seasonality profile for the facilities 
in Zambia. 

Figure 10. Geographic Distribution of Health Facilities in Zambia: Facility Distribution of 
Seasonal and Aseasonal Facilities in Zambia from October 2010 to October 2012. 

Figure 11 specifically describes the steps taken to create the seasonality profile for Zambia. We used 
the seasonal facilities identified earlier that had sufficient stock to avoid the effect of stockouts and 
close to two years of data. Because of the limited availability of data, we converted the consumption 
of the different presentations of artemether/lumefantrine (AL; 1x, 2x, 3x, 4x six-tablet pack) to the 
consumption of tablets. This conversion to the consumption of tablets overall is particularly relevant 
given that presentations of AL may be cut down or combined to provide the appropriate dose for a 
patient in stockout situations. 
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Figure 11. Steps for Creating a Seasonality Index in Zambia 
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We then generated two-month consumption totals over two years and took the average of 
consumption in one two-month period and consumption in the same two-month period, but one 
year later. This averaging approach is particularly appropriate if there is a change in level across years 
and that change is better described as a percentage increase rather than as a constant increase in 
magnitude across all the months (i.e., multiplicative instead of additive). 

Figure 12 shows the resulting seasonality index in blue and the LSI for forecasting at the facility level 
in red. The seasonality profiles reveal the low point of consumption in the August to September 
time period and the highest consumption in the four months of February through May. This 
corresponds with a general rainy season that stretches from November to April, assuming that 
malaria persists for some time even after the rainy season ends. In particular, the seasonality index 
shows that the ratio of consumption at its peak to consumption at its lowest is 2.6. Even this piece 
of knowledge can be helpful in inventory and resource planning, as consumption in August and 
September can provide four to six months of advance notice about needs for malaria the following 
year. 
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Figure 12. Seasonality Index and LSI for Zambia Seasonal Health Facilities 
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Testing LSI on Zambia Consumption Data 
To test the LSI approach on Zambia data, additional forecasting models were considered for 
comparison. The models are described as follows.3 In particular, these models were compared using 
data both from seasonal facilities and aseasonal facilities. Note that these are all forecasting methods, 
not reordering rules, as they predict consumption in future periods. Based on the predictions of 
these methods, inventory replenishment procedures can be adjusted and maximum stock levels 
determined based on established max/min levels. 

The first forecasting method is the simple AMC rule, which takes the average of previous two 
periods of consumption as the forecast for the next period.4 The second forecasting method is the 
simple exponential smoothing (ExS). The formula for exponential smoothing is: 

, where is the forecast for period t+1;  is the consumption in period t;  
and is a constant that is optimized, where the alpha is varied to reduce forecasting error and to 
provide the best forecasting outcome. The approach involves smoothing the previous forecast by 
taking a weighted average of it and the most recent consumption data. This is a very famous 
forecasting approach, popular because of its simplicity. In creating the forecast, the value of was 
optimized to give the best result on each of the datasets—seasonal facilities and aseasonal. 

3  Although  Gallien  et al. (2012) also address seasonality  issues in the Zambian context, their approach does not make use of an explicit  
forecasting methodology that  could  be used for comparison here, as described in the appendix.
  
4  One of  the rules  of thumb  for evaluating a forecasting approach when an external  benchmark is not available or appropriate, is to compare it
  
to forecasting using the most recent  consumption. The  simple rule here is similar, but a bit  more robust since it uses two  periods rather than 
 
one.
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The third approach is triple exponential smoothing (3xExS), which is similar to the exponential 
smoothing approach but involves additional parameters to incorporate trend and seasonality (see 
appendix A). The approach allows parameters to vary by facility, which are updated after every 
period of consumption. As with the exponential smoothing, the values of user-specified parameters 
within the forecasting approach were partially optimized to give the best result on each of the 
datasets.5 Finally, since the LSI approach uses the same seasonality factor across all facilities, the last 
model is based on the triple exponential smoothing, but here the seasonality index was artificially 
fixed to be the same across all facilities (3xExSF). 

Evaluating Models Using Mean Average Percentage Error (MAPE) 
The indicator used here to evaluate the performance of the different forecast approaches, including 
the LSI, is referred to as the mean absolute percentage error (MAPE). The formula for MAPE is the 
following: 

The indicator involves taking the absolute error as a percentage of the actual, where the absolute 
error is the difference between the forecast and the actual, ignoring the sign of the error. Finally, the 
average or mean of all the percentage errors is taken. It follows then that the MAPE can range from 
zero to infinity, with a lower MAPE score indicating better forecasting performance. MAPE, like 
other performance indicators, can be affected by many things, including the fit of the forecasting 
methodology to the data, the inherent complexity of the forecasting task, (e.g., if seasonality or noise 
in the data are present), or if forecasting a new product compare to an existing/old product. The 
MAPE is also affected by level of aggregation; so for example, everything else being equal, the 
MAPE should be lower for national forecasts than for facility forecasts, and the same for annual 
versus weekly forecasts or family product versus individual product forecasts. 

As a result of the variation that we can find in MAPE scores due to all of these factors, it is difficult 
to have an external benchmark for forecasting performance, so there are some rules for alternatives 
to the external benchmark. For example, 10 percent to 50 percent can be considered good, 
depending of course on the context. In lieu of an external benchmark, some recommendations are 
to compare the MAPE of the forecasting methodology to the simple forecast, which uses the 
consumption in the previous period, or to compare the forecast methodology to itself but, over 
time, expecting to see an increase in effectiveness as learning occurs. 

Figure 13 shows how the forecasting methods compare based on the MAPE for 102 aseasonal 
facilities. Since the MAPE can be driven by outliers arising from consumption actuals that are very 
small, the x-axis captures a cut-off threshold that results in ignoring the forecast error for any 
consumption levels that are lower than the threshold. For example, at a cut-off consumption level 

5  The parameters for the triple exponential smoothing were only partially  optimized  as there was not enough  historical data to  optimize all  of  
them, in  particular, the parameters for smoothing the seasonality indices.  
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threshold of 200, forecasts are not calculated and, therefore, are not included in the MAPE score for 
all consumption levels below 200. 

In forecasting aseasonal facilities, the LSI approach uses the seasonality index that was derived from 
the seasonal facilities. Our first observation is that the relative performance of the forecasting 
methods is roughly the same across the different cut-off thresholds. For aseasonal facilities, the 
triple exponential smoothing has the lowest error, while LSI is similar to simple exponential 
smoothing and triple exponential smoothing with fixed seasonality index across facilities. For 
reference, at a cutoff of 200, which is about 11.5 percent of the average two-month consumption, 
the MAPE score for triple exponential smoothing is 44 percent, while for LSI the MAPE score is 
about 56 percent. The worst performer is the simple rule, with 68 percent. 

Figure 13. Forecasting Performance Comparison for Aseasonal Facilities 

For the 41 seasonal facilities, we see similar results in figure 14, although the cut-off threshold has 
more of an effect on the relative ranking of the forecasting methods. For reference, at a cutoff of 
300, which is about 11.8 percent of the average two-month consumption for the 41 seasonal 
facilities, the MAPE score for triple exponential smoothing is 32 percent; for triple exponential 
smoothing with fixed seasonality index, the MAPE score is 42 percent; while for LSI it is 55 percent. 
The worst performer again is the simple rule, at 85 percent. 
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Figure 14. Forecasting Performance Comparison for Seasonal Facilities 

Evaluating Models Using Allocated Inventory Cost Methodology 
In evaluating a forecasting approach for inventory replenishment, measures like the MAPE do not 
always translate into good inventory replenishment performance. For example, we can get the same 
MAPE score if a forecast methodology were consistently above the actual and if another were 
consistently below the actual by the same amount. However, for antimalarial commodities, we 
would prefer to have excess inventory rather than an equal number of units of missed/lost 
consumption. The timing of the forecasting error with respect to seasonality matters as well. The 
forecasting error during a peak season tends to bias the MAPE score lower than the forecast error 
during the low season, due to the higher levels of the actual consumption, but generally, the errors in 
the peak season are the ones that are more significant for health outcomes and inventory 
management response. Finally, decisions made in one period can have lasting effects on subsequent 
periods. For example, too much inventory in one period can carry over to later periods, and lost 
consumption in one period can affect forecasting in subsequent periods, especially if it is not 
tracked. 

The alternative is a standard approach used to evaluate inventory replenishment approaches and 
involves simulating aggregate inventory costs by allocating a cost to excess inventory and a separate 
cost to lost consumption. In our approach, we normalize the cost of an excess unit of inventory by 
setting it to one. Then, we allow the cost of one unit of lost consumption to vary from zero (or less 
costly than an excess unit of inventory) to a large number (that is more costly than an excess unit of 
inventory). The latter is more the norm and, in the case of donated commodities, the relative cost of 
lost consumption to cost of excess inventory can be quite high, with very conservative estimates of 
this ratio generally above 10. We consider separately the cases where lost consumption is tracked 
versus not tracked. When lost consumption is tracked, although there are stockouts, we still know 
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what consumption would have been and can use this information in our forecasting method. In the 
cases where the lost consumption is not tracked, we do not know what consumption would have 
been. 

Figure 15 shows how for aseasonal facilities and tracking lost consumption, the inventory costs vary 
according to the cost of lost consumption, which can vary from zero to a large number and, in the 
case of the graph, to 20. The lower the inventory costs, the better the performance of the 
forecasting method. Generally, costs should rise as cost of consumption increases; however, some 
methods may have a steeper slope if they generally have more stockouts than another method. What 
we see here is that the LSI performance tracks closely to the triple exponential smoothing and does 
so more than any other method, including the triple exponential smoothing with fixed seasonality 
index, for all facilities. For reference, at a lost consumption cost of 10, the LSI and triple exponential 
smoothing have a difference in cost of 2 percent, while the triple exponential smoothing with fixed 
seasonality index for all facilities is 16 percent higher. Another interesting thing to note here is the 
performance of the simple exponential smoothing. It performs disastrously, showing a tendency for 
stockouts as shown by the increase in costs as the cost of lost consumption increases. Yet, simple 
exponential smoothing still had a similar MAPE score to that of LSI and triple exponential 
smoothing with a fixed seasonality index for all facilities. 

Figure 16 shows the performance for seasonal products when lost consumption is tracked. Again, 
the LSI approach tracks closest to the triple exponential smoothing, while the triple exponential 
smoothing does very well at seasonal facilities, given that its costs barely rise as the cost of lost 
consumption does. This results from the fact that, in this instance, the forecasting method primarily 
results in an oversupply of inventory, with few stockouts and lost consumption. Therefore, its costs 
do not rise much as the costs of lost consumption increase. For reference, at a lost consumption 
cost of 10, the LSI and triple exponential smoothing have a difference in cost of 12 percent while 
the triple exponential smoothing with fixed seasonality index for all facilities is 24 percent higher 
than the triple exponential smoothing. 
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Figure 15. Inventory Replenishment Performance Comparison for Aseasonal Facilities and 
Tracking of Lost Consumption 
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Figure 16. Inventory Replenishment Performance Comparison for Seasonal Facilities and 
Tracking of lost Consumption 
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Figure 17 shows the performance of the forecasting method for seasonal when lost consumption is 
not tracked, and so the forecasting method does not have the information of what consumption 
would have been if there was no stockout. Again, LSI tracks the closest to triple exponential 
smoothing. For reference, at a lost consumption cost of 10, the LSI and triple exponential 
smoothing have a difference in cost of 15 percent, while the triple exponential smoothing with fixed 
seasonality index for all facilities is 44 percent higher than the triple exponential smoothing. The 
outperformance of the triple exponential smoothing might be exaggerated here. As mentioned 
earlier, when tracking lost consumption (see figure 16) the forecasting method tended to oversupply 
and suffer little stockouts. Therefore, it follows that it would be minimally affected if lost 
consumption was not tracked. 

Figure 17. Inventory Replenishment Performance Comparison for Seasonal Facilities and 
No Tracking of Lost Consumption 

Examining the results on the aseasonal facilities, figure 18 shows different and very interesting 
results, especially since the triple exponential smoothing does suffer more significant stockouts, and 
therefore, can be affected more significantly if lost consumption is not tracked. Here the LSI is the 
one model that outperforms triple exponential smoothing and is followed in performance by none 
other than the simple AMC rule. Recall that the simple AMC rule had consistently the worst MAPE 
scores. For reference, at a lost consumption cost of 10, the LSI and simple rule have a difference in 
cost of just 16 percent, while the triple exponential smoothing is 24 percent higher than the LSI. 

The results also are not terribly surprising because the exponential smoothing forecasting methods 
place a lot of weight on the most recent consumption data. If those data are poor, the forecasts are 
corrupted. The LSI and the simple rule use averages of consumption from multiple periods, which 
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provides some robustness to the effect of lost consumption that is not tracked. Both methods, at a 
lost consumption cost of 10, are slightly worse when lost consumption is not tracked: 4 percent 
higher for LSI and 1 percent higher for the simple rule. However, the exponential methods have 
costs increasing by 64 percent or more when lost consumption is not tracked. In fact, the simple rule 
comes second in performance only because the other methods suffer so significantly. 

Figure 18. Inventory Replenishment Performance Comparison for Aseasonal Facilities and 
No Tracking of Lost Consumption 
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Tables 5 and 6 capture all of the results that were individually referenced for each comparison. 
Generally, LSI on the more important inventory cost method of performance evaluation is second 
only to the sophisticated 3xExS and has superior performance when lost consumption is not 
tracked. In addition, the MAPE scores for LSI are adequate. 
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Table 5. Summary of Forecasting and Inventory Replenishment Performance 
Comparison I 

MAPE 
(aseasonal) 

MAPE (seasonal) 
Inventory Costs 

(aseasonal, 
tracking) 

Inventory Costs 
(seasonal, 
tracking) 

3xExS 44% 32% Lowest Lowest 

LSI 56% 55% +2% +12% 

3xExSF 53% 42% +16% +24% 

ExS 55% 55% +36% +185% 

Simple AMC 68% 85% +26% +44% 

Table 6. Summary of Forecasting and Inventory Replenishment Performance 
Comparison II 

Inventory Costs 
(aseasonal, not tracking) 

Inventory Costs 
(seasonal, not tracking) 

3xExS +25% Lowest 

LSI Lowest +15% 

3xExSF +67% +44% 

ExS +138% +203 

Simple +16% +44% 

Zambia Analysis Summary 
The availability of consumption data at health facilities with good inventory support for close to two 
years facilitated our analysis in this case study. A geographic analysis of so-called seasonal facilities 
revealed no discernible pattern to their distribution across Zambia, lending support for considering 
their seasonal pattern as being representative for Zambia as a whole. Tests on seemingly aseasonal 
facilities using this seasonal pattern seemed to confirm its suitability. 

The Zambia consumption data allowed for a considerable test of the LSI approach. Given its 
simplicity, ease of use, and ease of explanation, the LSI performs admirably in the tests here. It was 
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tested both as an inventory replenishment mechanism under conditions that correspond to 
healthcare settings in developing countries and as a forecasting method. Although its performance 
was not consistently superior to all of the models used for comparison, its performance for both 
seasonal and aseasonal facilities was still commendable given how closely it tracked the consistently 
superior model (i.e., triple exponential smoothing). The LSI even outperformed triple exponential 
smoothing when lost consumption was not tracked (a common phenomenon in many countries). In 
addition, some of the methods that the LSI was evaluated against were far more sophisticated and 
optimized for the data being forecast. 
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Zimbabwe Case Study 

This section examines the Zimbabwe context for the potential utility of the LSI approach and also 
to provide simulated results of the use of the LSI approach on historical consumption data. 

Zimbabwe 
Zimbabwe is a country of approximately 13.8 million people in Southern Africa (Central Intelligence 
Agency 2013). With a gross domestic product (GDP) per capita of approximately U.S.$600 (2012), 
Zimbabwe was ranked 172nd out of 186 countries on the Human Development Index in 2012 
(United Nations Development Programme 2013). Zimbabwe is a relatively urbanized country in 
sub-Saharan Africa, with 39 percent of the population concentrated in a couple urban areas. 

Approximately 50 percent of the population of Zimbabwe is at risk for developing malaria, which is 
the third most common cause of illness and death and accounts for 30 percent of outpatient visits at 
clinics. Annually, there are approximately 1.5 million malaria cases and 1,000 deaths from the 
disease. From 2004 to 2007, there was a marked decline in malaria incidence; however, it is unclear 
whether this resulted from intensified malaria control interventions or other factors, such as a 
weakened surveillance system and poor reporting. 

Malaria transmission in Zimbabwe is largely unstable, with five strata that can be identified: malaria 
free; sporadic malaria; low and seasonal malaria; moderate and seasonal malaria; as well as high and 
seasonal malaria transmission areas (figure 19 Ministry of Health and Child Welfare Zimbabwe 2008 
2008–2013). With a tropical climate modified by elevation, most of the country has conditions 
conducive to malaria transmission, particularly during the rainy season, during the November to 
April time period. Rainfall varies, with malaria transmission higher in high rainfall provinces and 
lower transmission in low rainfall areas. Out of the 62 rural districts, 45 are classified as having 
malaria transmission and, of these, 30 are classified as heavy burden districts (Ministry of Health and 
Child Welfare Zimbabwe 2008). 

Antimalarial commodities are distributed with essential medicines and medical supplies (procured by 
the United Nations Children’s Fun [UNICEF]) through the harmonized Zimbabwe Informed Push 
(ZIP)/Primary Healthcare Packages (PHCP) system. The collection, aggregation, and analysis of 
malaria logistics data are automated through AutoDRV software, and essential logistics data are 
readily available, on a quarterly basis, for decisionmaking. As compared to the other reporting 
systems in Zambia and Burkina Faso, the Zimbabwe data are unique in reporting on a quarterly 
basis. 
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Figure 19. Zimbabwe Map of Malaria Transmission Strata 

Creating the Seasonality Index for Zimbabwe 
Figure 20 shows the geographic distribution of seasonal selected health facilities in Zimbabwe. All 
facilities receiving product through the ZIP/PCHP system were considered for analysis, because all 
facilities receiving antimalarial products were assumed to serve populations susceptible to malaria. 
The blue dots represent facilities with at least seven (out of eight) quarters of data, over the course 
of 2011–2012, and sufficient amounts of stock. For purposes of this analysis, an “insufficient” 
amount of stock was defined as a facility having, in that particular quarter, 30 days or more of AL 
stockouts. (Thirty days per quarter was determined as insufficient based on 10 days of stockout per 
month, which was a category created across all case studies.) These were excluded because of the 
misleading effect of stockouts on consumption patterns. Facilities without stock represent possible 
lost consumption, and facilities without sufficient stock over time may be less likely to attract clients 
in general, artificially lowering consumption further if the public perceives that a facility does not 
have medicines on hand and as a result does not seek facility services. 
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Figure 20. Geographic Distribution of Seasonal Selected Facilities, Zimbabwe 

The other health facilities with sufficient data generally did not fit the seasonality pattern of the 
seasonal facilities, with either no discernible trend or, less frequently, a relatively flat trend over time. 
Of approximately 700 facilities with sufficient data, 159 were selected as having a seasonal trend. All 
quarters of the two years had relatively good reporting rates of at least 90 percent. 

Figure 20 describes the steps taken to create the seasonality profile for Zimbabwe. As described, we 
used the seasonal facilities that had sufficient stock to avoid the effect of stockouts and at minimum 
seven quarters (close to two years) of data. As in Zambia, first line malaria treatment used in 
Zimbabwe is AL, with co-formulated tablets containing both artemether (20 mg) and lumefantrine 
(120 mg) and packaged in blister packs of four presentations: 1x6 tablets (5–14 kg); 2x6 tablets (15– 
24 kg); 3x6 tablets (25–34 kg); and 4x6 tablets (>34 kg). To investigate trends in AL consumption 
overall, we converted the consumption of the different presentations to the consumption of tablets 
overall. (The decision was made to calculate and combine consumption of tablets, rather than 
investigate individual presentations because of the limited availability of data.) This is particularly 
relevant given that presentations of AL may be cut down or combined to provide the appropriate 
dose for a patient in stockout situations. 
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Figure 21. Steps for Creating a Seasonality Index for Zimbabwe 

1. Use “seasonal” facilities with sufficient stock and at least seven quarters of data.
2. Convert consumption of different presentations of AL to consumption of tablets.
3. Generate three-month aggregate consumption totals over two years.
4. Take the average of consumption across the same quarter in each of the two years.
5. Divide the average consumption for the four quarters of the year by the consumption in the Jan–Mar

quarter to create seasonality indices.

Figure 22 and table 7 show the resulting seasonality index and the one-quarter ahead LSI for 
forecasting at the facility level. The seasonality profiles reveal the low point of consumption in the 
July–September time period, which matches with the general rainy season that stretches from 
November to April. In particular, the seasonality index shows that the ratio of consumption at its 
peak to consumption at its lowest is 3.06. Even this piece of knowledge can be helpful in inventory 
and resource planning, as consumption from July to September can provide six to nine months 
advance notice about the needs for malaria the following year. 

The LSI for forecasting at the facility level used here is defined by the formula: 

Where si is the seasonality index for quarter i, since facilities generally have a very low lead time 
between their quarterly orders and delivery of inventory.6 Through the rolling warehouse 
mechanism, deliveries are made immediately after data are collected and resupply is calculated. 

Table 7. Zimbabwe Consumption, Seasonality Index and LSI 

Jan Mar Apr–Jun Jul Sept Oct Dec 

Average 
Consumption 
(2011–2012) 

1104.64 1281.10 419.19 627.05 

Seasonality Index 1 1.1597406 0.3794779 0.5676535 

LSI 1.2945229 1.3040817 0.7724854 0.7668231 

6  Given the quarterly review period,  we also considered  alternative  definitions of LSI, specifically defining LSI as the ratio  of only one  forward-
looking seasonality index and  one backward-looking seasonality index, and then the ratio of the average of  two  forward-looking and backward-
looking seasonality indices. In comparisons,  the  current  definition of LSI outperformed  the alternatives.  
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Figure 22. Zimbabwe Seasonality and LSI 
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Testing LSI on Zimbabwe Consumption Data 
To test the LSI approach on Zimbabwe data, additional forecasting methods were considered for 
comparison, and the models are all described in detail in the previous Zambia case study section of 
this report. Based on the predictions of these methods, inventory replenishment procedures can be 
adjusted and maximum stock levels determined based on established max/min levels. As with the 
Zambia case study, these models were compared using data from both seasonal facilities and 
aseasonal facilities. 

The first forecasting method used is the simple rule, which in this case takes the previous quarter’s 
consumption as the forecast for the next period. This rule is currently practiced in Zimbabwe, where 
AMC is calculated from consumption data from the last three months and adjusted for any days out 
of stock. The second forecasting method is the simple exponential smoothing. The third approach is 
triple exponential smoothing, which allows parameters to vary by facility and updated after every 
period of consumption. Finally, because the LSI approach uses the same seasonality factor across all 
facilities, the fourth and last model is based on the triple exponential smoothing, but where the 
seasonality index is artificially fixed to be the same across all facilities. 

Evaluating Models Using Mean Average Percentage Error (MAPE) 
As with the Zambia case study, the performance indicator used here to evaluate the performance of 
the different forecast approaches, including the LSI, is referred to as the mean absolute percentage 
error, or MAPE. 
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Figure 23 shows how the forecasting methods compare based on the MAPE for 539 aseasonal 
facilities. Since the MAPE can be driven by outliers arising from consumption actuals that are very 
small, on the x-axis we vary a cut-off threshold. This results in the MAPE score ignoring the 
forecast error for actual consumption that is lower than the threshold. In forecasting aseasonal 
facilities, the LSI approach uses the seasonality index that was derived from the seasonal facilities. 

Our first observation is that the relative performance of the forecasting methods is roughly the same 
across the different cut-off thresholds. For aseasonal facilities, the triple exponential smoothing has 
the lowest error, while LSI is similar to simple exponential smoothing and triple exponential 
smoothing with fixed seasonality index across facilities. For reference, at a cutoff of 100, which is 
about 10.8 percent of the average quarterly consumption, the MAPE score for triple exponential 
smoothing is 60.5 percent, while for LSI the MAPE score is about 113 percent. The worst 
performer is the simple exponential smoothing with 122 percent. 

Figure 23. Forecasting Performance Comparison for Aseasonal Facilities 
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For 159 seasonal facilities in figure 24, we see similar results. For reference, at a cutoff of 90, which 
is about 10.42 percent of the quarterly consumption, the MAPE score for triple exponential 
smoothing is 29 percent; for triple exponential smoothing with fixed seasonality index, the MAPE 
score is 64 percent; while for LSI, it is 82 percent. The worst performer here is the simple rule, at 
124 percent. 
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Figure 24. Forecasting Performance Comparison for Seasonal Facilities 
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Evaluating Models Using Allocated Inventory Cost Methodology 
The second approach to evaluating LSI in relation to other approaches involves simulating aggregate 
inventory costs by allocating a cost to excess inventory, plus a separate cost to lost consumption. In 
our approach, we normalize the cost of an excess unit of inventory by setting it to one, and then 
allowing the cost of one unit of lost consumption to vary from zero (or less costly than an excess 
unit of inventory) to a large number (that is more costly than an excess unit of inventory). We 
consider only the case where lost consumption is tracked, so that although there are stockouts, we 
still know what consumption would have been and can use this information in our forecasting 
method. 

Figure 25 shows how for aseasonal facilities and tracking lost consumption, the inventory costs vary 
according to the cost of lost consumption, which can vary from zero to a large number: in the case 
of this graph, to 20. The lower the inventory costs, the better the performance of the forecasting 
method. Generally, costs should rise as cost of consumption increases; however, some methods may 
have a steeper slope if they generally have more stockouts than another method. What we see here is 
that the LSI performance tracks closely to the triple exponential smoothing with fixed seasonality 
index, which both perform closest to the triple exponential smoothing. For reference, at a lost 
consumption cost of 10, the triple exponential smoothing and triple exponential smoothing with 
fixed seasonality index for all facilities have a difference in cost of 49 percent, LSI has a difference of 
54 percent, simple exponential smoothing has a difference of 69 percent, and the simple rule has a 
difference of 84 percent. 
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Figure 26 shows the performance for seasonal products again when lost consumption is tracked. 
Again, the LSI approach tracks closely to the triple exponential smoothing with fixed seasonality 
index, both of which perform closest to the LSI triple exponential smoothing. This results from the 
fact that in this instance, the forecasting method primarily results in an oversupply of inventory and 
little stockouts and lost consumption. For reference, at a lost consumption cost of 10, the triple 
exponential smoothing and triple exponential smoothing with fixed seasonality index for all facilities 
have a difference in cost of 50 percent, LSI has a difference of 50 percent, simple exponential 
smoothing has a difference of 70 percent, and the simple rule has a difference of 99 percent. 

Figure 25. Inventory Replenishment Performance Comparison for Aseasonal Facilities and 
Tracking of Lost Consumption 
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Figure 26. Inventory Replenishment Performance Comparison for Seasonal Facilities and 
Tracking of Lost Consumption 
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Table 8 captures all of the results that were individually referenced for each comparison. Generally, 
the LSI is as close to the sophisticated triple exponential smoothing as triple exponential smoothing 
with fixed seasonality on the more important inventory cost method of performing evaluation. 
However, the MAPE scores for LSI are somewhat high. 

Table 8. Summary of Forecasting and Inventory Replenishment Performance, 
Comparison I 

MAPE 
(aseasonal) 

MAPE 
(seasonal) 

Inventory Costs 
(aseasonal, 
tracking) 

Inventory Costs (seasonal, 
tracking) 

3xExS 60% 29% Lowest Lowest 

LSI 113% 82% +54% +51% 

3xExSF 89% 62% +49% +50% 

ExS 124% 117% +69% +70% 

Simple 120% 126% +84% +99% 
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Zimbabwe Analysis Summary 
The availability of consumption data at health facilities with good inventory support for close to two 
years facilitated our analysis here. A geographic analysis of so-called seasonal facilities revealed no 
discernible pattern to their distribution across Zimbabwe, lending support for considering their 
seasonal pattern as being representative for Zimbabwe as a whole. In addition, the seasonal facilities 
covered the various strata in malaria transmission that have been identified for Zimbabwe (see 
figure 19). 

When we look at the distribution of facilities that were selected as having seasonal patterns, they 
covered most of the areas of Zimbabwe, including those with high rates of malaria and those with 
low rates of malaria. The incidence rates of malaria aren’t so important for seasonality; what is 
important is that malaria has the same pattern through the year in terms of when there are peaks and 
relative heights of the peak versus the low season. (Consumption at the facility level is used to 
estimate forward consumption. Using consumption at the facility adjusts for the local incidence 
rates, whether rates are high or low.) So seasonal patterns can be representative, even in a country 
that has different incidence rates in different regions. 

Tests on seemingly aseasonal facilities using this seasonal pattern seemed to confirm its suitability. 
There is the possibility that seasonality patterns developed for each of the various strata for malaria 
consumption could improve forecasting and inventory performance further, but this was not 
attempted in this analysis. 

The Zimbabwe consumption data allowed for a similar testing of the LSI approach as with Zambia. 
Given its simplicity, ease of use, and ease of explanation, the LSI performed well in the tests, 
particularly those based on allocated inventory costs, having similar performance to the triple 
exponential smoothing with fixed seasonality. 

As a pure forecasting method based on its MAPE scores, the LSI performance was not as 
comparable to the triple exponential smoothing with fixed seasonality as was the Zambia case study. 
However, we believe that the testing based on the allocated inventory costs should be given 
preference. In evaluating the performance of the LSI and along with its expected robustness in the 
event that consumption is not tracked, we would still conclude that the LSI can be recommended 
for use in Zimbabwe. 

As is the case with the other countries, the AMC simple rule was not ideal for addressing seasonality 
in Zimbabwe. To some extent this is to be expected, as the simple AMC rule is reactive to demand 
by only looking at past consumption instead of proactive (i.e., anticipating demand). Generally, 
addressing seasonality usually requires some proactive activities in the supply chain. A quarterly 
review period was also probably not as helpful; theoretically, you would only realize demand was 
changing after three months, when a more frequent review period would allow for earlier detection 
of the high or low season and a faster reaction. Because data were only available by quarters, we 
could not test the impact of the quarterly review (e.g., by simulating what would happen if reviews 
were monthly or bimonthly). 

Zimbabwe should benefit from LSI because it is fundamentally more sound than the AMC rule, as 
the LSI anticipates demand. Simulations of the resulting levels of inventory and stockouts also 
suggest LSI should outperform the AMC rule: lower levels of inventory, especially in the low season, 
and lower levels of stockouts in the peak. LSI generally also has some robustness to poor 
consumption data resulting from stockouts and does not have to be 100 percent accurate to provide 
benefits. 
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Burkina Faso Case Study 

This section examines the Burkina Faso context, for the potential utility of the LSI approach and 
also to provide simulated results of the use of the LSI approach on historical consumption data. 

Burkina Faso 
Burkina Faso’s population is estimated to be 17.8 million people in July 2013, with an annual growth 
rate of 3.1 percent (Central Intelligence Agency 2013). Forty-four percent of the population lives 
under the poverty line, with a GDP per capita in 2009 estimated to be U.S.$512 (Institut National de 
la Statistique et de la Démographie et ICF International 2012). 

Malaria is one of the leading public health challenges in Burkina Faso. In 2011, malaria represented 
about 45 percent of all medical consultations at the health districts and 14 percent of all 
hospitalizations at the referral hospitals. Children under age five disproportionately suffer from the 
disease: Malaria accounts for 54 percent of consultations in health districts, and of the total deaths 
due to malaria, 79 percent are estimated to be among children under age five. Between 2010 and 
2011, both the number of malaria cases reported and reported malaria deaths decreased slightly, with 
the number of malaria cases falling from 5,723,481 to 5,024,697, and the number of deaths falling 
from 9,034 to 7,001 (Direction Générale de l’Information et des Statistiques Sanitaires 2011). 

The rainy season lasts approximately four months, from May/June to September and is shorter in 
the north of the country. There are three traditional malaria endemic zones, with the length of 
transmission seasons increasing from the south to the north of the country, as shown in figure 27. 
However, recent malaria incidence data from the National Malaria Control Program does not follow 
this epidemiological stratification, and the traditional malaria endemic zones may need to be 
reassessed. Typically, the northernmost Sahelian region has a short transmission season and is prone 
to malaria epidemics, whereas the Sudano-Sahelian region has a longer, seasonal malaria 
transmission season. The Sudano region in the south of the country experiences year-round malaria 
transmission. The majority of the population is at risk of malaria transmission, either seasonally or 
year round. 
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Figure 27. Malaria Transmission Zones, Burkina Faso 

First line malaria treatment used in Burkina Faso is the fixed dose combination (FDC) 
artesunate/amodiaquine (AS/AQ). Four presentations are used for treatment: 25 mg/67.5 mg (3 
tablets, 5–11 months); 50 mg/135 mg (3 tablets, 1–5 years); 100 mg/270 mg (3 tablets, 7–13 years); 
and 100 mg/270 mg (6 tablets, >13 years). Unlike AL, during a stockout situation, presentations for 
higher weight bands of FDC AS/AQ are generally discouraged from being cut down for children in 
lower weight bands, as cutting or crushing the tablets could lead to inaccurate dosages. However, the 
practice is common in countries with AS/AQ, and there is a precedent in country forecasting for 
AS/AQ to combine presentations and forecast in aggregate, rather than at the presentation level. In 
part due to data quality challenges encountered, in our analysis here we take advantage of this 
precedent by combining AS/AQ presentations for testing the LSI approach in inventory 
replenishment and forecasting. 
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Creating the Seasonality Index for Burkina Faso 
Figure 28 shows the approximate geographic distribution of an initial set of health facilities that were 
selected as having seasonal trends in Burkina Faso. The seasonal facilities identified had at least eight 
months of data and sufficient stock to avoid the effect of stockouts. A month of data was excluded 
from analysis if the facility had insufficient stock, or was stocked out for 10 days or more during that 
month. Unlike the other two countries studied in this analysis, facility-level latitude and longitude 
data were not available. However, district-level geospatial coordinates were available and used to 
illustrate the approximate location of selected facilities. The selected 257 facilities represented 11 of 
13 regions and 32 of 301 districts in Burkina Faso. One year of data was analyzed, although due to 
data quality issues, data were missing in April 2012, and only one facility had available data in 
January 2012. 

Figure 28. Seasonal Selected Facilities, Burkina Faso 

Although this initial set of facilities represented a significant number of regions, beyond the data 
issues in January and April 2012, there was also significant variation of the number of facilities with 
consumption data across months. For example, 159 facilities had sufficient data in December 2012, 
as compared to 257 facilities in July 2012 (see table 9). 
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Table 9. Number of Identified Seasonal Facilities with Consumption Data in 2012 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Number 
of 
Facilities 

1 227 242 0 243 255 257 257 252 207 203 159 

This variation in the number of facilities with consumption data across the months in 2012, along 
with the data omissions in January and April 2012, necessitated refining the set of seasonal facilities 
further. From the initial set of seasonal facilities, facilities that had data for all of the remaining 
months (February, March, May–December) were selected. This resulted in 57 facilities out of the 
original 257. The consumption from these 57 facilities seemed to suggest two distinct set of 
seasonality indices, as captured in figure 29. 

Figure 29. Burkina Faso Short and Long Seasonality Indices 
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Figure 30. Steps for Creating Seasonality Indices in Burkina Faso 

1. Use “seasonal” facilities with good inventory presence and at least 10 months of data. 
2. Consumption patterns of individual presentations of AS/AQ were aggregated to create monthly 

consumption totals for 10 months (February, March, May–December). 
3. Facilities with extremely low or zero consumption in October were grouped together into the short 

seasonality group, and the rest formed the long seasonality group. 
4. Monthly consumption across all facilities in the same seasonality group was averaged. 
5. Since consumption data for January and April were absent, monthly averages for those months were 

estimated as the average of the surrounding months: February and December for January, and March and 
May for April. 

6. Seasonality indices were created by dividing monthly averages by the February monthly average. 
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Of the two sets of seasonality indices created, one seasonality index could be described as “short” 
and was based on 26 facilities, while the other could be described as “long” and was based on the 
remaining 31 facilities. Whereas both seasonality indices showed a peak in the months of August and 
September, the short seasonality showed a significant drop-off in consumption in the rest of the 
months of the year. The long seasonality showed high consumption in July and October, along with 
the peaks in August and September. This peak season for the “long” seasonality coincides with the 
Burkina Faso rainy season. Figure 31 shows the approximate geographic distribution of these 57 
facilities. 

Figure 31. Location of Facilities for “Short” (in Pink) and “Long” (in Red) 
Seasonality Indices 

Due to the unlikelihood of consumption in the last three months of year being very low, we focused 
on the “long” set of seasonality indices. Results from a comparison of the long seasonality index 
with the short seasonality index for forecasting all available seasonal facilities supported this choice. 

Figure 32 and table 10 show the resulting long seasonality index and the one quarter ahead LSI for 
forecasting at the facility level. The seasonality index shows that the ratio of consumption at its peak 
(August) to consumption at its lowest (December) is 8. 

The LSI for forecasting at the facility level used here is defined by the formula: 

Where si is the seasonality index for month i, since facilities generally have a very low lead time 
between their monthly orders and delivery of inventory. 
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Table 10. Burkina Faso Long Seasonality Index and LSI 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Long 
Seasonality 

0.70 1.00 1.00 0.87 0.73 0.91 1.40 3.14 2.70 1.66 1.01 0.39 

LSI 0.68 1.28 1.37 0.97 0.87 1.17 2.17 2.38 1.37 0.74 0.41 0.39 

Figure 32. Burkina Faso Long Seasonality and LSI 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Burkina Faso Long Seasonality 
and LSI 

Long Season LSI 

Testing LSI on Burkina Faso Consumption Data 
To test the LSI approach on Burkina Faso data, additional forecasting methods were considered for 
comparison, and the models are described in detail in the Zambia case study section of this report. 
Unlike the Zambia and Zimbabwe case studies, these models were only compared using data from 
seasonal facilities. 

The first forecasting method used is the simple rule, which in this case takes the average of the 
previous three months of consumption as the forecast for the next period. The second forecasting 
method is the simple exponential smoothing. The third approach is triple exponential smoothing, 
and the fourth is the triple exponential smoothing but where the seasonality index is artificially fixed 
to be the same across all facilities. 
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Evaluating Models Using Mean Average Percentage Error (MAPE) 
As with the Zambia case study, the performance indicator used here to evaluate the performance of 
the different forecast approaches including the LSI is referred to as the mean absolute percentage 
error, or MAPE. 

Figure 33 shows how the forecasting methods compare based on the MAPE for 257 seasonal 
facilities. Since the MAPE can be driven by outliers arising from consumption actuals that are very 
small, on the x-axis we vary a cut-off threshold. This results in the MAPE score ignoring the 
forecast error for actual consumption that is lower than the threshold. In forecasting seasonal 
facilities, the LSI approach uses the seasonality index that was derived from the seasonal facilities. 

For seasonal facilities, the triple exponential smoothing has the lowest error, while LSI is similar to 
triple exponential smoothing with fixed seasonality index across facilities. For reference, at a cutoff 
of 30, which is about 11.45 percent of the average monthly consumption, the MAPE score for triple 
exponential smoothing is 17 percent, while for LSI the MAPE score is about 59 percent. The worst 
performer is the simple rule, at 76 percent. 

Figure 33. Forecasting Performance Comparison for Seasonal Facilities 
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Evaluating Models Using Allocated Inventory Cost Methodology 
The second approach to evaluating LSI in relation to other approaches involves simulating aggregate 
inventory costs, by allocating a cost to excess inventory and a separate cost to lost consumption. In 
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our approach, we normalize the cost of an excess unit of inventory by setting it to one, and then 
allowing the cost of one unit of lost consumption to vary from zero (or less costly than an excess 
unit of inventory) to a large number (that is more costly than an excess unit of inventory). We 
consider only the case where lost consumption is tracked, so that although there are stockouts, we 
still know what consumption would have been and can use this information in our forecasting 
method. 

Figure 34 shows how for seasonal facilities and tracking lost consumption, the inventory costs vary 
according to the cost of lost consumption, which can vary from zero to a large number—in the case 
of this graph, to 20. The lower the inventory costs, the better the performance of the forecasting 
method. Generally, costs should rise as cost of consumption increases; however, some methods may 
have a steeper slope if they generally have more stockouts than another method. 

What we see here is that the LSI performance is closest to the triple exponential smoothing and 
outperforms the other forecasting methods. For reference, at a lost consumption cost of 10, the 
triple exponential smoothing and LSI have a difference in cost of 55 percent; triple exponential 
smoothing with fixed seasonality index for all facilities, a difference of 68 percent; the simple rule, a 
difference of 145 percent; and simple exponential smoothing, a difference of 225 percent. 

Figure 34. Inventory Replenishment Performance Comparison for Seasonal Facilities and 
Tracking of Lost Consumption 
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Table 11 captures all of the results that were individually referenced for each comparison. Generally, 
LSI on the more important inventory cost method of performance evaluation is second only to the 
sophisticated triple exponential smoothing. In addition, the MAPE scores for LSI are adequate. 
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Table 11. Summary of Forecasting and Inventory Replenishment Performance 
Comparison 

MAPE (seasonal) Inventory Costs (seasonal, tracking) 

3xExS 17% Lowest 

LSI 59% +55% 

3xExSF 52% +68% 

ExS 65% +225% 

Simple 76% +145% 

Burkina Faso Analysis Summary 
In Burkina Faso, the availability of consumption data at health facilities with good inventory support 
was not ideal for our analysis here. Data were only available for 10 months of the year and only for 
some facilities. Regarding those that suggested little to no consumption in the last three months of 
the year, the data were considered suspect. This resulted in the analysis of a very small set of 31 
facilities, located in a narrow band running northwest to southeast across the middle of the country. 
These facilities provided the seasonality profile used to evaluate the LSI approach. Interestingly, the 
seasonality profile given by these 31 facilities provided both good forecasting and allocated 
inventory cost performance on the original set of 257 seasonal facilities, which were more broadly 
distributed across the country. 

In particular, as a pure forecasting method based on its MAPE scores, the LSI performance was as 
comparable to the triple exponential smoothing with fixed seasonality as was the Zambia case study. 
In addition, similar to the Zambia case study, based on allocated inventory costs, the LSI approach 
was outperformed only by the triple exponential smoothing. 

While these results do lend some support for the use of the LSI approach in Burkina Faso, some 
caution should be expressed given that the seasonality index used here has not been developed from 
more robust data and also has not been tested on additional facilities(i.e., aseasonal facilities) from 
Burkina Faso. In addition, when data availability improves, it would be appropriate to evaluate the 
LSI approach on the various presentations of AS/AQ, given that there are ongoing attempts to 
discourage substituting across presentations when administering medication. 
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Conclusion 

This concept paper describes an approach for enhancing the Simple AMC rule to handle seasonal 
commodities, while maintaining some of its simplicity to continue to meet complex needs. The 
approach operationally involves multiplying the AMC by indices that compensate for seasonality— 
referred to as Look-Ahead Seasonality Indices—before applying the maximum months of stock 
level. The LSI approach is intended to provide a practical, easy-to-use, enhanced means of 
calculating resupply for seasonal commodities, at all levels of the supply chain. Because of its 
similarity to the simple AMC rule, the LSI approach is one that should be relatively easy to introduce 
into healthcare settings in developing countries. Given its simplicity, it should also be relatively easy 
to integrate into electronic-based information systems. 

Many of the challenges for addressing the resupply of seasonal commodities have been examined 
here, and the LSI approach at least partially, if not completely, addresses all of these concerns. In all 
country case studies that tested consumption data on antimalarials from Zambia, Zimbabwe, and 
Burkina Faso, the LSI approach’s performance was commendable and could be recommended both 
as an inventory replenishment mechanism, under conditions that correspond with the healthcare 
settings in developing countries, as well as a forecasting method. 

For all countries, the LSI approach was evaluated in comparison to four other common models (the 
simple AMC rule, simple exponential smoothing, triple exponential smoothing, and triple 
exponential smoothing with fixed seasonality index) and was evaluated in two ways: (1) as an 
inventory replenishment mechanism using the allocated inventory costs and (2) as a forecasting 
method using the MAPE. (Due to the intended need for LSI, to aid resupply in healthcare settings in 
developing countries, the testing of inventory replenishment based on the allocated inventory costs 
is most important and should be given preference.) As a result of this process, each country case 
study provides an estimate of the seasonality index and corresponding LSI that could support 
application of the LSI approach or similar approaches based on seasonality indices within these 
countries. 

In Zambia, the LSI approach performed best in comparison with the other models, in part because 
the availability of monthly consumption data over nearly a two-year time period facilitated analysis. 
The LSI performance for both seasonal and aseasonal facilities was commendable given how closely 
it tracked the consistently superior (and sophisticated) model, triple exponential smoothing. The LSI 
even outperformed triple exponential smoothing when lost consumption was not tracked (a 
common phenomenon in many countries). 

In Zimbabwe, the LSI performed well in the tests, particularly those based on allocated inventory 
costs, having similar performance to the triple exponential smoothing with fixed seasonality. 
However, as a pure forecasting method based on its MAPE scores, the LSI performance was not as 
comparable to the Zambia case study. However, we would still conclude that the LSI can be 
recommended for use in Zimbabwe. A possible limitation of the Zimbabwe data was its availability 
only on a quarterly basis; theoretically, you would only realize demand was changing after three 
months, when a more frequent review period would allow earlier detection of the high or low season 
and a faster reaction. 
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A main difference between the country case studies was the issue of data availability, particularly in 
Burkina Faso. Special care must be taken with Burkina Faso’s results since, although the LSI 
approach performed well in testing, it would be preferred that the supporting seasonality index had 
been based on more robust consumption data and that testing of the LSI approach had been more 
extensive. Data were only available for 10 months of the year and only for some facilities. When data 
availability issues are addressed, the LSI approach should be tested with additional months of data 
and should also be tested on aseasonal facilities (as was the case with Zambia and Zimbabwe). It 
would also be appropriate to analyze the approach using individual presentations of AS/AQ given 
ongoing attempts to discourage substituting across presentations when administering medication. 

Because of its reliance on historical consumption data, the LSI approach might, in theory, be applied 
in other countries where the President’s Malaria Initiative (PMI) and the National Malaria Control 
Programs (NMCPs) have access to consistent, relatively robust data, and the simple AMC rule is 
currently in place for inventory replenishment. A limitation of the LSI approach is its capacity to 
look too far ahead in the future (e.g., one year). The approach may be best suited for resupply 
calculations, as well as shorter term forecasts, as the further ahead that the LSI is used to look ahead, 
the greater the chance that level of the period may have changed compared to that of the most 
recent consumption. An assessment of the LSI approach may also be of value in order to test the 
method, its practicality, and its results in a controlled field setting in comparison to current resupply 
methods. 

In all countries, the simple AMC rule was outperformed for addressing seasonality in comparison to 
the LSI approach. To some extent this is to be expected, as the simple AMC rule is reactive to 
demand by only looking at past consumption, instead of proactive (i.e., anticipating demand as in the 
case of the LSI approach). Generally, addressing seasonality usually requires some proactive 
activities in the supply chain. 

As any quick scan of the literature reveals, there are many ways to approach both inventory 
replenishment and forecasting. The approach introduced and assessed here is only one such method. 
The discussions here should be considered a case for the legitimacy of the LSI approach for seasonal 
commodities, but not to the exclusion of other approaches, or that the suitability of the LSI 
approach should be taken for granted in all situations involving seasonal commodities. As always, 
the particular context of the country situation should first be carefully considered in the testing and 
potential application of the LSI approach. 
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Appendix A 

Holts-Winter Triple 
Exponential Smoothing 

The Holts-Winter Triple Exponential smoothing is a forecasting approach that incorporates both 
trend and seasonality (Winters 1960). The method is referred to as triple exponential smoothing 
because a general smoothing technique involving a weighted average of the old forecast and the new 
data is used for the (1) seasonality indices, (2) the trend parameter, and (3) the overall forecast. The 
basic equations of the method is given by: 

FORECAST 

Where 

y is the observation 

S is the smoothed observation 

b  is the trend factor  

I is the seasonal index 

F is the forecast at  m  periods ahead  

t is an index denoting a time period, and 

α, β, and γ  are constants  that must be  estimated in  such as way  that the mean square error is  
minimized  (NIST/SEMATECH 2012).  
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Appendix B 

General Formula for LSI 

The general formula for LSI for a tier of the supply chain that has lead time l and review period p is 
given in Figure 35. Here the numerator is the average of the seasonality indices of the p periods 
starting when the inventory would arrive, which is l periods after period I, along with the indices of 
the periods that precede and follow. 

Figure 35. LSI Formula for General Supply Chain Tier 
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Appendix C 

Use of LSI in Higher Tiers 
of the Supply Chain 

Higher tiers of the supply chain have a choice in terms of the information to which it will respond 
when managing its inventory: either responding to its own consumption information (i.e., the 
quantities that it ships) or consumption information from stages further down in the supply chains 
(e.g., patient consumption at the facility level). It’s tempting to think that this information should be 
the same. But, generally, it turns out that this is not the case. Figure 36 shows the orders from a 
facility that uses a simple AMC rule that takes the average of the last two periods and compares it to 
the actual consumption at the facility. It shows that the orders from the facility can at times 
overestimate, while at other times underestimate the actual consumption at the facility. An objective 
measure of the variability over time—the standard deviation—of orders and of consumption shows 
that orders are almost twice as variable as consumption. In some cases of an underestimate of 
demand, orders are actually zero while consumption never actually falls to zero. In such a setting, 
using orders from the facility can give different results in managing inventory than using 
consumption at the facility. The driving factor in this decision is usually the lack of visibility into 
consumption at the facility. In many developing country settings, this information is incorrect due to 
errors in the field or lack of recording of this data or, if the data is indeed captured, there is usually a 
significant delay before the information is made available to upstream tiers in the supply chain. 

Figure 36. Comparison of Orders and Actual Consumption for a Facility Using Simple 
AMC Rule 
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We can consider two settings, one where consumption at the facility is visible to upstream tiers in 
the supply chain and another where it is not visible. We use simulation to get a sense of what the 
effect of performance would be in each of these settings. Primarily, we assume a simple supply chain 
with two levels and only one entity at each level. The lowest level in this situation will be designated 
the Facility while the upstream level will be designated Central.7 Although the typical supply chain 
will have multiple facilities and in some cases more than two tiers in the supply chain, the insights 
derived from this simple model will generally carry over to more complex settings. Under either 
visibility assumption we consider three possibilities: (1) both entities use LSI, (2) only the Facility 
uses LSI, or (3) neither entity uses LSI but instead use a version of the simple AMC rule.8 In any 
setting, consumption is visible or not visible to Central. When the Facility is not on LSI, it uses 
consumption in the previous period as the AMC. When the Facility is on LSI, it uses the average of 
the most recent three periods of consumption as the AMC and multiplies this by the one period LSI 
to get a forecast for future consumption.9 We also assume that in the event of any stockouts at the 
Facility, the consumption that would have occurred if inventory was available is recorded and used 
in forecasting. 

Our expectation is that the use of LSI should improve performance, especially when both tiers  
use it. 

Consumption Is Not Visible to Upstream Stages 
Here we assume that when Central is not on LSI, it uses an average of the four most recent orders 
from facility and shipments to the Facility, like the AMC. When Central is on LSI, it use this AMC 
multiplied by one period LSI to get a forecast for future orders.10 The first observation from the 
results is seen in figure 37, namely, that the use of the LSI by the Facility reduces the variability of 
orders from the Facility. Whereas the simple AMC rule increased the standard deviation of orders by 
80 percent over that of consumption, the LSI approach only increases the standard deviation by 24 
percent. In addition, orders from the Facility using the LSI approach are less likely to be zero 
compared to the simple AMC rule. This should aid the forecasting of orders from the Facility by 
Central since orders are less of an underestimate and/or overestimate of actual consumption. 

7  We assume that  the Facility orders  at the beginning  of the period and that orders are replenished immediately from inventory  at Central. 
Central  then procures and receives its inventory before the  beginning of  the  next period.
  
8  When  the  Facility is not  on LSI, it  uses the  consumption in the previous  period as the AMC. When  Central is  not on LSI, it uses  an average of
  
the four most recent orders from the Facility and shipments to the Facility.
  
9  The top-up multiplier for the facility  is 2.
  
10  We allow the top-up multiplier of  Central to vary in the simulation to change the level  of inventory in the supply  chain and to see the effect
  
on  stockouts and lost consumption.
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Figure 37. Comparison of Orders from Facilities Using an LSI Approach and Using the 
Simple AMC Rule 
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Figure 38 shows the system inventory and the average percentage of consumption that is lost at the 
Facility as a result of stockouts for each of the three scenarios: (1) both entities use LSI, (2) only the 
facility uses LSI, or (3) neither entity uses LSI.11 Here, the system inventory is the inventory at 
Central after sending inventory to the Facility as well as the inventory at the Facility after meeting 
demand. Generally, the lower the curve on this graph, the better performing the scenario, since it 
implies that the scenario is able to meet the same level of consumption but with lower levels of 
inventory in the entire supply chain. The results show that, except for low levels of lost 
consumption, the scenario where both entities use LSI outperforms the other scenarios, followed by 
the scenario where the facility only uses LSI. 

In summary, in a setting where there is a lack of visibility into facility consumption, it is always 
beneficial for the Facility to use LSI even if Central does not. This results partly from the reduction 
in variability in orders that result from using the LSI at the Facility that makes orders more 
representative of consumption and thus simulates some visibility. 

11  These  curves were generated by  varying the top-up multiplier for Central, which changed  the level of inventory in the supply chain, which  
then influenced stockouts and lost  consumption.  
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Figure 38. Inventory Service-Level Trade-off Comparison for Two-Level Supply Chain 
When Consumption Data Is Not Shared Upstream 
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Consumption Is Visible to Upstream Stages 
When Central is not on LSI, it uses Facility consumption in the previous period as the AMC. When 
Central is on LSI, it uses the average of the most recent three periods of consumption as the AMC 
and multiplies this by the one period LSI to get a forecast for future consumption. As with the 
setting where consumption is not visible to Central, we see in figure 39 that the scenario where both 
entities use LSI outperforms the other scenarios, followed by the scenario where the facility uses 
LSI. Interesting though, at moderate to high levels of stockouts and lost consumption, in the 
scenario in which only the Facility uses LSI, the Facility performs similarly to scenario in which 
neither Facility uses LSI. 

66 



Figure 39. Inventory Service-Level Trade-off Comparison for Two-Level Supply Chain 
When Consumption Data Is Shared Upstream 
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Benefits of Sharing Consumption 
Although the previous analysis shows a clear recommendation for both the Facility and Central to  
use LSI irrespective of whether consumption information is made visible to Central, the  analysis can  
be repurposed to provide insights into when sharing information is recommended. Figure 40 shows 
rather startling results. In the figure, the three possible scenarios—(1)  either both entities use LSI,  
(2)  only the  Facility uses LSI, (3)  or neither entity  uses LSI—are compared individually under the  
two visibility conditions. Visibility into consumption levels  or,  more precisely, the use of  
consumption data for managing inventory is not a clear winner  in any scenario and is completely  
rejected in the setting where only the  Facility uses the LSI. For the scenario  in which both Central  
and the  Facility use the LSI, visibility is preferred when the level of stockouts and lost consumption  
is low;  otherwise, it is not preferred. This finding  is somewhat reversed for the setting where neither  
Central nor the  Facility uses LSI.  

Although there are multiple factors contributing to the results here, including the fact that the 
ordering mechanisms used for Central and the Facility are simple and not necessarily optimized for 
the particular scenario and/or make best use of information available, a contrast with the clear 
recommendation of the previous analyses seems clear. Visibility into consumption seems only 
beneficial if both Central and the Facility employ some level of sophistication in interpreting and 
forecasting (e.g., using the LSI) and additionally only if inventory levels are high enough to keep 
stockouts low. The last condition has more recently come to characterize products that receive 
external support by well-funded donor organizations with such commodities being labeled as in “full 
supply.” 
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Figure 40. Differential Benefits of Sharing Consumption Data Upstream 
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Appendix D 

Decoding Gallien et al. 2012 

The Gallien, Leung, and Yadav (2012) article entitled “Rationality and Transparency in the 
Distribution of Essential Drugs in Sub-Saharan Africa: Analysis and Design of an Inventory Control 
System for Zambia” and the research efforts of its authors have become a benchmark of sorts for 
conceptualizing the management of seasonal commodities in Zambia. Here we examine their article 
to have a better understanding of what they have done so that the LSI approach can be understood 
in relation to that work. 

The Gallien et al. article seeks to promote a particular inventory replenishment/control 
methodology. By replenishment we mean: How does one decide how much inventory to distribute 
within the supply chain and where? The research activities in the Gallien article that are most 
relevant for our purposes are first, to test their inventory replenishment/control methodology 
against the simple AMC rule, especially in the presence of seasonality and supply lead times with 
variability. They also describe a methodology for historical demand estimation. 

Comparison 
A look at the objective features of the Gallien inventory replenishment approach (hereafter referred 
to as the Gallien approach) and the Simple AMC rule not only sets the expectations for what we 
would see in a comparison of the two approaches, but also identifies some of the additional steps 
that need to be taken in order to fairly test one approach to the other. 

Gallien’s approach is primarily optimization based at the individual decision level. The approach 
involves identifying the costs of getting incorrect the inventory replenishment decision of moving 
inventory from one level to the next. In this case one can either have too much inventory or too 
little and we can assign a cost to each of those situations. With these costs, Gallien’s approach can 
search for an inventory replenishment solution that gives the lowest overall cost. It should also be 
pointed out that the Gallien approach does not have an inherent forecasting approach. It accepts 
forecasts as input data to their inventory replenishment approach. More precisely, these forecasts are 
taken as representing the true demand that the inventory replenishment must seek to satisfy. In 
contrast, the simple AMC rule has no optimization at the individual decision level, although the 
argument can be made that the top-up level target and associated minimum inventory levels are not 
arbitrary but have been chosen with some logic in mind. In addition, whereas the Gallien approach 
has no inherent forecasting approach, the simple AMC does have an inherent forecasting approach 
that is suited to demand patterns that exhibit strong serial correlation from one period to the next. It 
can be reasonably used for demand that has no trend; that is, it is generally level over time. 

So, to compare, the simple AMC is going to do pretty poorly against Gallien’s approach for malaria 
commodities in Zambia, which we expect to have a seasonal pattern, in part because it does not 
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optimize for every decision but, more importantly, because the inherent forecasting used is geared 
toward a different kind of product. 

Comparing the Two Approaches 
To actually compare the two approaches,  there is a bit of work that needs to  be done to facilitate the  
comparison. One detail is that of a scoring method for comparing the different approaches. One of  
the scoring methods utilizes the same costs of getting the inventory decision incorrect that the  
Gallien approach optimized. Accordingly,   

distribution requirement  parameters.   

The final activity needed to support their comparison is to incorporate forecasting performance. As 
mentioned earlier, Gallien’s approach needs a forecast with which to operate. Instead of describing a 
forecasting methodology that they use on their realistic demand, the authors approach forecasting in 
a different way. Without specifying the details of any forecast methodology, the authors simulate 
what the output would be from a “good” but generic forecast methodology and what the output 
would be from an “ok” but, again, still generic forecasting methodology. The authors then 
incorporate these “good” and “ok” forecasts into the simple AMC rule approach and test the effect 
of forecasting on its performance. 

How can one simulate forecasting performance without having a methodology? Here is the essence 
of how it can be done. Assume we can get some benchmarks of MAPE scores for good and ok 
forecast methodologies, say 35 percent and 50 percent. In the Gallien article, the authors approach 
some other academics who have done work in forecasting for similar benchmarks; however, the 
authors do not report which benchmarks each approach can be compared based on the costs 
incurred for the inventory replenishment decisions that result from using the approach. The higher 
the costs incurred, the lower the approach is considered to perform. We use a similar approach in 
the article for comparing the LSI approach against other forecasting models. 

Since the authors did not have access to consumption data across a number of facilities, a second 
detail is that of having realistic facility consumption data to test the approaches against. The authors 
generated this consumption data by extracting a basic demand pattern from 18 facilities that they 
followed closely in their study and extrapolating this basic pattern to about 184 facilities with tweaks 
based on facility features (e.g., coverage area). Technically, this is not forecasting, although the 
mechanics of a forecasting approach could be distilled from what they do here. Rather, the authors 
simulate consumption that, in reality, has already taken place in lieu of collecting this data on 
consumption. 

Other activities needed for supporting the comparison of different approaches include modeling 
supply lead time performance and inventory flow through the supply chain. Specifically, lead times 
from the central medical store were modeled as constant while lead time from the districts to health 
facilities were modeled as being variable. In addition, for potentially cut-off facilities, a probability of 
a facility being cut off was explicitly incorporated. With respect to inventory flow, for the Simple 
AMC rule, two approaches were considered: cross-docking at the district and alternatively staging 
inventory at the district. Gallien’s approach would choose between these approaches based on which 
one was optimal for their particular set of cost and are used. 

Next, in table 12, we’ve provided some examples of forecasts that have a MAPE score of 35 
percent. Here we’ve cheated a bit and made all the actuals equal to 100. Since MAPE ignores the 
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sign of the error—that is, the difference between the actual and the forecast—a forecast 
methodology that consistently outputs 65 as the forecast, in this case F1, gets the same MAPE score 
as one that consistently outputs 135 as the forecast, in this case F2. Similarly, a forecast that 
alternates between 65 and 135 also gets the same MAPE score. To get these MAPE scores we did 
not use actual forecasting but instead generated a set of numbers that when compared to actuals, 
give MAPE scores equal to 35 percent. Similarly, if we had put the forecasts at 50 or 150, then we 
would receive a MAPE score of 50 percent. The approach that Gallien used to generate their set of 
forecast numbers was probably more sophisticated; for example, there was probably more variation 
in their forecasts, but the basic idea of creating numbers from actuals that when compared to actual 
numbers would give a desired MAPE score is consistent with their description of their approach in 
the article. With these simulated forecasts from a generic “good” and “ok” methodology, the 
authors can then compare their approach using either forecast methodology with the Simple AMC 
rule, and additionally, the Simple AMC rule can be tweaked to incorporate both the good and ok 
methodologies. 

Table 12. Examples of Forecasts and MAPE Scores 

Facility Actual F1 F2 F3 

1 100 65 135 65 

2 100 65 135 135 

3 100 65 135 65 

4 100 65 135 135 

5 100 65 135 65 

MAPE 35% 35% 35% 

Reflecting on Comparison Results 
The most relevant results from their analysis are the following. The first is that forecasting is 
important. Every approach generally benefits when going from the generic “ok” forecasting 
methodology to the generic “good” one. The second is that Gallien’s approach with good 
forecasting performance outperforms everything else. Third is that cross-docking with the Simple 
AMC rule but incorporating “good” forecasting can be comparable to Gallien’s approach coming 
within 4 percent of its cost-based score. 

Reflections on the article raise the following points. The first is that the results of the article don’t 
reject the idea of searching for alternative approaches to Gallien’s. The question of forecasting 
methodology is still an open one, since they don’t propose an actual forecasting methodology and 
their inventory control approach needs one. Second, the Simple AMC rule with generic “good” 
forecasting in their simulation has comparable results. 
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Finally, the choice between Gallien’s approach and the Simple AMC rule with good forecasting 
seems to concern choosing an appropriate trade off. On one hand, we have the Gallien approach, 
which is optimal for each facility, but that potentially requires significant effort to program and 
maintain in an electronic logistics management information system. It can practically be considered a 
black box approach, which has implications for acceptance and sustainability. As is common with 
optimization approaches, although we can rest assured that the approach has searched for the best 
solution to the problem, we may not have a lot of insight into why the solution looks the way it does 
and how it will change as parameters change. This lack of insight into what the approach will 
recommend at any given time can make it difficult to build a supply chain management process 
around it. On the other hand, we have a Simple AMC rule with (1) good forecasting that gives ok 
results for any individual facility, (2) that, depending on the forecasting approach, may be easy to 
program and maintain, and (3) that can be considered less of a black box compared to the Gallien 
approach. Accordingly, it may be easier to build a supply chain management process around the 
approach. 

However, we must acknowledge the level of speculation in many of these comments concerning the 
trade off between the Gallien approach and the Simple AMC rule with good forecasting by stating 
there is still a lot we don’t know about each approach when it comes to practice. What strengths, 
weakness, and opportunities do they confer on the real world systems that would attempt to use 
them? In particular, what are the challenges to acceptance and of a distinct orientation toward 
centralization that accompany an approach like Gallien’s on system design and implementation? 
How would the supply chain management processes or infrastructure differ under each approach, if 
at all? How would the information system management processes or infrastructure differ under each 
approach, if at all? There are valid arguments for both approaches and, as such, in the interest of 
knowledge and learning, we are more inclined toward opportunities that allow for both approaches 
to be tested and evaluated. In particular, if in Zambia, Gallien’s approach has generated enough 
political will to support its implementation, then Zambia can be the test case for their approach 
while another country like Tanzania can be considered for an alternative approach. 
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